

Monitoring Health and Performance of MW Scale Battery Installations Using OSISoft

Rebecca Gillespie Energy Storage Applications Manager

Agenda

- About UET
- Remote Monitoring: Health and Performance
- Use Case Description: Weekly Health Reports for Service Monitoring
- Savings in Time and Money
- Summary and Questions

About UET

UniEnergy Technologies

- Large Scale Energy Storage
- Founded in 2012 by Gary Yang and Liyu Li
- Based in Mukilteo, WA
- Molecules to MW (2012-2014):
 - Licensed Advanced Vanadium Electrolyte from PNNL
 - Developed Energy Dense, Containerized Flow Battery with Advanced Stack and Electrolyte Technology
 - Manufactured and Deployed the First 1MW System in Q1 2015
- Monitoring, Evaluation, Maintenance

Uni.System – 4 Hour Integrated AC Battery

- Energy Battery with Power Battery Capabilities
- Prime Applications
 - Micro-Grids especially for renewable integration
 - Transmission or Generation Deferral
 - Peak Shaving
 - Layered Applications
 - Backup Power
 - Frequency Regulation

Combined Ramping and Regulation Signal

Uni.System Basics

1 MW installation in Pullman, WA for Avista

Remote Monitoring

Tiered Response

Immediate

- Control System Faults
- Control System Warnings

Short Term

- PI Notifications
- Datalink Weekly Health Reports
- Troubleshooting

Long Term

- DataLink Weekly Health Reports
- Datalink Performance Reports
- Service Visit Reports

PI Data and OSI Applications

Data:

Process Data
State Data
Operational Data

Applications:
16 Coresight Displays
6 Weekly Health Reports
Notifications

Outcomes:
Quality Control
Service
Operation Optimization

Use Case Description: Service Monitoring

Data Flow

- New data points feed directly to AF
- Freedom to specify PI points (edges for events, smooth for integration)
- AF performs simple calculations, creates Event Frames needed for DataLink, and sends Notifications
- PI Applications
 - Coresight references AF for HTML coding
 - DataLink References AF to include Event Frames and calculations, for ease of replication

Health Reports

- 1 page weekly summary per 0.5 MW battery string
- Subsystem analysis calculated and compared to known failure or low performance parameters
 - Cooling System
 - Pump
 - Stacks (2 page report)
 - Gas Management
 - Matching
 - PCS
 - Sensors

Health Report: Cooling System

Health Report: Cooling System

Health report: Pump

Time-filtered averages for current time period and for baseline time period

Current period graphs

Electrolyte Pumps - Health Report (4/29/15 to 5/5/15)

 Site
 Avista1

 String
 String1

 Start
 4/29/2015

 End
 5/6/2015

Overall Assessment:

OK

Checks that none of the averages (Flow, Power, Pressure) deviated from the baseline average for that average speed by more than 20%

					Expected				Expected	Life-	1
			Avg.	Average	Avg.		Expected	Avg.	Avg.	time	
		% Time	Speed	Power	Power	Avg. Flow	Avg. Flow	Pressure	Pressure	Use	
		on	(%)	(kW)	(kW)	(LPM)	(LPM)	(psi)	(psi)	(days)	F
Battery1	Anolyte	99%	63	1.23	1.16	212	226	20.9	20.5	27	(
Battery2	Anolyte	99%	63	30	1.16	204	228	19.4	20.5	26	(
Battery3	Anolyte	99%	63	107	1.16	183	226	22.1	20.5	26	(
Battery4	Anolyte	100%	63	1.13	1.15	195	226	21.2	20.4	26	(
Battery1	Catholyte	99%	64	125	1.16	187	226	20.6	20.5	26	(
Battery2	Catholyte	99%	64	1.00	1.16	202	228	21.1	20.5	26	(
Battery3	Catholyte	99%	64	29	1.16	203	226	21.9	20.5	26	(
Battery4	Catholyte	100%	63	25	1.15	205	226	20.4	20.4	27	(

Health Report: PCS

Messages with dates/times and code interpretation based on error codes

"Pivot" efficiencies using and AF calculation, ranges and averaging with a complex filtering statement for current period and baseline

PCS Health report (week 4-29-15 to 5-5-15)

Avista1 Overall Assessment: String String1 Start 4/29/2015 Fnd 5/6/2015

OK

OK Assessment indicates no System Trips and efficiencies greater than 95% at 200-600 kW power

OK

System Trips:

PCS Trips Descriptions: PCS Temp deratings: BMS Faults

Descriptions:

Charging

Through	This week (kWh):		-959	Lifetime (MWh):		-1.9		
Time	This week (h):		87	Lifetime (days):		0		
Efficiency Au	Charging Power (+/- 10kW)							
Efficiency Av	100 kW	200 kW	300 kW	400 kW	500 kW	600 kW		
	750V - 800V							
DC Voltage range	800V - 850V							
DC Voltage range	850V - 900V			96.2%				
	900V - 950V		95.1%	96.2%				

Discharging

iserial ging								
Through	This wee	k (kWh):	714	Lifetime	1.2			
Time	This week (h):		63	Lifetime (days):		0		
Efficiency Av	Discharging Power (+/- 10kW)							
Ejjiciency Avi	100 kW	200 kW	300 kW	400 kW	500 kW	600 kW		
	550V - 600V		97.7%	97.7%	98.1%	98.2%	98.1%	
	600V - 650V		96.2%	97.3%	98.0%	97.9%	97.7%	
DC Voltage range	650V - 700V	39.8%	94.9%	97.4%	97.8%	97.8%	97.6%	
	700V - 750V	93.3%	96.3%	97.3%	97.7%	97.7%	97.5%	
	750V - 800V	94.2%	96.4%	97.4%				

Power, Voltage and Efficiency

Health Report: Stack

- Automatically Generate Coresight HTML for in-depth study on a cell by cell basis
- Key health parameters:
 - Max CV Min CV
 - Resistance
- More multi-parameter filtering with various summary statistics reported (average, max)
- Event triggers to watch for outlying cells or BOC/EOC specific parameters

Savings in Time and Money

Using Health Reports

- Implementation
 - Automated 8 page report generation for each string
 - Human review
 - Where possible create notifications from insight gained through reports and experience
 - Some notifications may evolve to real time controls over time as applicable
- Feedback
 - Improved real time controls where applicable.
 - Aided design team in identifying areas of improvement

Benefits

- Automate to the extent reasonable
- Create visuals and summary KPIs that allow quick review and interpretation
- Reduce service visits through predictive maintenance
- Feedback to reduce service
 - Improve maintenance Schedules
 - Improve design
 - Create operation- specific design

Summary

Pi system monitoring for weekly health reporting

COMPANY and GOAL

Unienergy Technologies manufactures, deploys, and maintains Large scale energy storage system for Utility, Industrial and Microgrid Customers. We use Pi to record, troubleshoot and monitor.

CHALLENGE

We provide all customers with a warranty and need a way to quickly scan data for issues.

- Many subsystems each of which requires slicing unique set of data
- Minimal sensors requires creative use of data to extract knowledge.

SOLUTION

Created Health reports for the deployed strings to be run weekly

- Each susbsystem report results in a single word summary
- Reports contain details for investigating slow degradation or false alarms.

RESULTS

Saved time and money by reducing workforce requirements and remote deployments

- Reduces manpower requirements for monitoring
- · Fed metrics from health reports to notifications and controls as required
- · Reduced investigative trips and minimized field service time.

Contact Information

Rebecca Gillespie

Becca.Gillespie@uetechnologies.com Energy Storage Application Manager UniEnergy Technologies

Questions

Please wait for the microphone before asking your questions

State your name & company

Please don't forget to...

Complete the Survey for this session

Quality and content of the presentations	Poor	Good	Excellen	t N/A
Welcome	0	0	0	0
The Journey To Real-Time Operational Intelligence	0	\circ	\circ	\circ
The Power of Connection	0	0	0	0
Tank Level Management System	\circ	\circ	0	0
Using the PI System to Aid in Troubleshooting Operational Aspects of Oil and Gas Well Drilling and Completion	0	0	0	0
Unleash your Infrastructure	0	0	0	0
Information on the Spot	\circ	0	0	0
Wrap-up/Seminar Conclusion	\circ	\circ	0	0
Quality and organization of the seminar				
Choice of date	0	\circ	\circ	0
Time allowed for lunch/breaks	0	\circ	0	0
Choice of presentations	\circ	\circ	0	\circ

감사합니다

谢谢

Merci

Gracias

Thank You

Danke

ありがとう

Спасибо

Obrigado