
Aaron Rosenthal - Operations Engineer, ERCOT

September 14, 2016

Promotion of AF Systems for 
Weekly Database Loads



About ERCOT

2



Introduction – ERCOT

• Electric Reliability Council of Texas, Inc.

– ISO/RTO for the state of Texas

• Four primary responsibilities

– System reliability – planning and operations

– Wholesale market settlement for electricity production 
and delivery

– Retail switching process for customer choice

– Open access to transmission

3



ERCOT Quick Facts

• 90% of Texas load

– 24 million customers

– 75% of load is retail-choice

• 77,000+ MW expected generation

• Record peak load of 71,197 MW

– August 11, 2016

• 16,000+ MW of installed wind capacity

– Most of any state in the nation

• 288 MW of installed solar capacity

4



PI at ERCOT

• Started using PI in 2010

• 530,000+ PI tags

– ~303,000 from SCADA

– ~123,000 for Performance Equations

– ~61,000 for AF analyses

• 2TB total used archive space

– ~2GB daily archive size

5



6

Official Control Room PI 
Displays



Next-gen Displays

• Prototype for new
renewables desk

• Tracking wind curtailment

• Uses web technologies

– PI Web API

– AngularJS

– Highcharts

7



9

Building Asset Framework



9

Requirements Gathering Build Asset Model DTAP PromotionDevelop AF Library

Determine existing PI tag 
naming conventions for 
various asset types

Decide on key asset 
metadata for both analysis 
and display purposes

Plan element hierarchy 
structure for both analysis 
and navigation purposes

Transform CIM model data 
into AF XML file format

Define elements based on 
both template and category 
information for maximum 
rollup analysis capability

Develop, Test, Acceptance, 
Production

Compare previous model file 
and model configuration to 
current

Create delta files to import 
into target environments for 
reduced import times

Build element templates 
based on requirements

Ensure template 
configuration is decoupled 
from the server environment

Include table connection 
configuration to make data 
outside PI accessible

Building Asset Framework

Study Develop Test Acceptance Production



Building Asset Model

• Asset Framework model file built weekly using custom 
queries of CIM model (stored in Oracle database)

– Data transform of CIM model snapshot

– Formatted in AF XML schema format

• XML file defines element structure

– Parent-child relationships and element references

– Template, categories, and attribute values

10



Comparing Model Files

• Comparison of model files (previous and current) to 
produce difference file

– Results in significantly faster import times (minutes 
versus hours)

– Necessary to capture deleted or renamed assets

• Fundamental building block of XML file is the 
<AFElement> XML block

– Traces a unique element path in the element 
hierarchy

11



Model File Structure

Flat Structure Nested Structure

12



Model File Structure

• Can be combination of flat and nested structure

• Allows maximum flexibility for developers of CIM model 
data transform queries

13



Model File Merging

• Merging process combines XML nodes that have 
identical paths

• Facilitates difference file creation algorithm

– No need to account for multiple path locations

• Preserves original order of XML nodes

– Necessary to avoid broken element reference 
dependencies

• Prescribes to AF XML schema validation rules

14



Example: Model File Merging

Before Merge After Merge

15



Difference Detection

• Deleted elements

• Unchanged elements (not included)

• New elements

• Renamed elements

16

Previous 
Model

New 
Model



Difference File Creation

• File structure can include a combination of nested and 
flat element and/or attribute value structures

• Path to same element can be defined in multiple 
locations (developer flexibility)

• Alternative keys can be used for element rename 
detection, for example:

– attribute value or extended property storing unique 
ID from CIM model

17



Difference Detection Algorithm

• Build compare key for all XML nodes using <Name> child 
node as primary key

• Operates from “inside-out”: XML nodes processed in 
order of decreasing depth

18



Example: Compare Key

19

• Path strings are guaranteed unique thanks to AF structure
• Note – Flat paths don’t need to be expanded due to merging process



Example: Difference Detection

Previous Model New Model

20



Deleted Elements/Attributes

• Element/attribute nodes missing from new model file 
indicate a deleted attribute or element

• Indicated by operation=“delete” attribute in XML

• Program must keep track of parent XML nodes in new 
model file with same path as parent node in old file

– Needs knowledge of where to insert delete operation

• Note – Element references can also be deleted

21



Example: Deleted Elements

Previous Model New Model

22



Special Case: Attribute Reset to Template

• Attribute nodes missing from new model which are part 
of an attribute template

– Indicate a “reset to template” operation

– Requires knowledge of AF library configuration

– Sets attribute default value, or data 
reference/configuration string (if available)

23



Rename Detection

• Only necessary for <AFElement> nodes

• Build rename keys to all <AFElement> nodes using a 
combination of alternative keys (e.g., attribute or 
extended property value) and <Name> nodes

• Build element path strings to all <AFElement> nodes

• Renames occur when rename keys match but element 
path strings do not

24



Example: Rename Detection

Previous: Path\To\Element New: Path\To\RenamedElement

25

Compare key: AFElement[Name=Path]/AFElement[TEID=12345]



Renamed Elements

• Functionally the same as a create-plus-delete operation

• Rename detection facilitates PI tag renaming

• Note – Would be superior if operation=“rename” 
attribute existed in the AF XML schema

– Feature would automatically re-evaluate PI tag 
configuration strings and perform a tag rename if 
necessary

26



Library File Comparisons

• Development (or “gold standard”) library export

– Compared against multiple environment exports (test, 
production, etc.)

• Compare key generation follows similar logic

– Traces ancestor XML nodes

– Use <Name> child element as primary key

• Note – Rename detection not necessary for library files

27



Library File Normalization

• Library files require some preliminary transformations

– Replace references to PI system and AF database in 
the “gold standard” library before comparing

– Remove ‘override’ extended properties

– Remove sensitive or environment specific information

28



Library Difference File Creation

• Create/update/delete detection follows same logic

• Some exceptions:

– AFTable

– AFTableConnection

– AFAnalysisRule

– AFTimeRule

29



Ongoing Challenges

• Analysis/notification instance statuses

– Changes in development currently not propagated

• PI tag renames for attribute templates

– Complicated by multi-part renames

– Requires interaction with AF SDK or PI builder

• Better version control for library changes

– Possible integration with Git/Bitbucket

• What to do with GUIDs?

30



Aaron Rosenthal

aaron.rosenthal@ercot.com

Operations Engineer II

Advanced Network Applications

ERCOT, Inc.

31

mailto:aaron.rosenthal@ercot.com


Thank You


