

Supporting Operational Availability with PI System and SAP PM connection

Presented by **Réka Erdei Gábor Mucsina**

Agenda

- Introduction
- Business Challenge
- Focus on Predictive and Preventive Maintenance
- Implementation Details
 - Corrosion & integrity predicting High Temperature Hydrogen Attack (HTHA)
 - Preventive maintenance aided by the connection of OSIsoft's PI System and SAP PM
- Summary

MOL Group

MOL is an integrated, independent, international oil and gas company, headquartered in Budapest, Hungary with a track record of over 100 years in the industry.

MOL Group in numbers

OSIsoft and MOL Hungary

Role of PI System in Danube Refinery

Primary process database and operational intelligence tool

- Production Management
- Reporting
- Operation
- Quality Management
- Maintenance
- Energy Monitoring
- ...

Business Challenge

Reliability and preventive programs

- NxDSP increase operational excellence
- UPTIME reliability improvement program (FMEA, LFF, RCFA)

UPTIME

PSM (Process Safety Management)

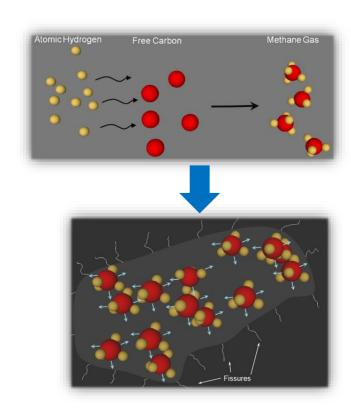
Our goal is to **keep our assets healthy** to avoid unplanned shutdowns

- Avoid harmful process conditions
- Increase the ratio of preventive maintenance

Focus on predictive and preventive maintenance

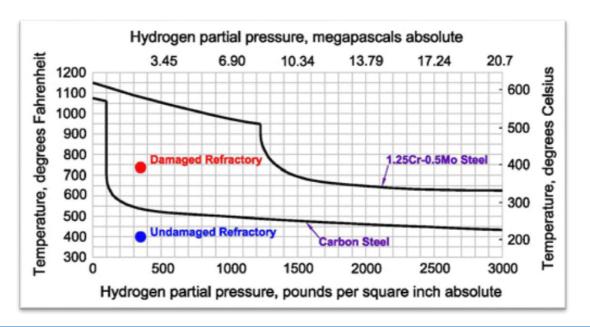
Two new PI System-based solutions to support the maintenance team Predictive Fix it before it breaks Preventive Routine repairs Reactive SAP-PM Fix it after it breaks

Corrosion & Integrity Predicting High Temperature Hydrogen Attack (HTHA)

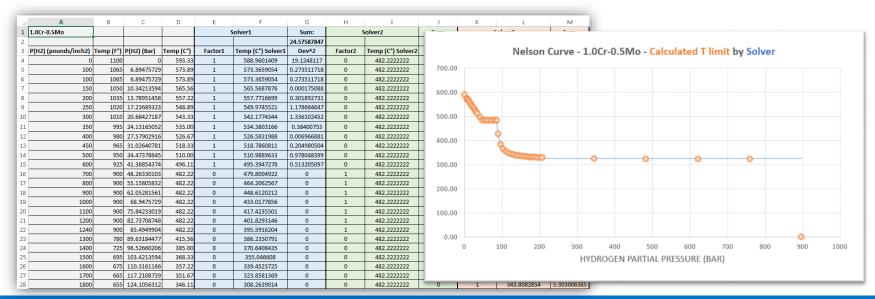

BACKGROUND - IOW

Definition of Integrity Operating Windows (IOW): Established limits for process variables (parameters) that can affect the integrity or reliability of the equipment if the process operation deviates from the established limits for a predetermined length of time.

BACKGROUND - HTHA

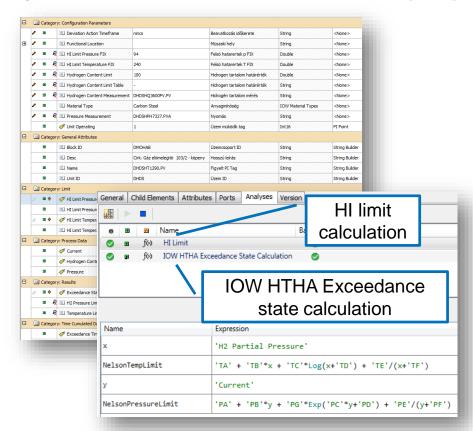

- Tesoro, Anacortes refinery, 2010
- Fatal injury of seven employees
- Heat exchanger catastrophically ruptured because of an HTHA - high temperature hydrogen attack
 - HTHA occurs when atomic hydrogen diffuses into the steel walls of process equipment
 - The hydrogen reacts with carbon in the steel, producing methane gas
 - Methane molecules cannot diffuse out of the steel, they accumulate inside of the steel, creating high pressure, forms fissures in steel
 - This reaction removes carbon from the steel (decarburization)

BACKGROUND – Nelson Curves


API 941

 A Nelson Curve is an empiric curve used in production units which shows the permissible hydrogen partial pressure and temperature for the given pipe class (material of construction) to avoid HTHA.

IMPLEMENTATION— Nelson Curves with solver

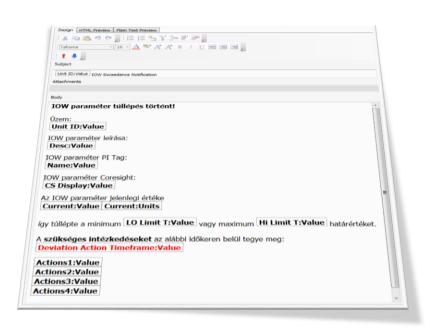

- Estimate T-p data values from the Nelson curves
- Minimize the squared deviation by the help of Excel Solver
- Tune the Excel Solver parameters to fit better on the points

IMPLEMENTATION— Create the system in Asset Framework (AF)

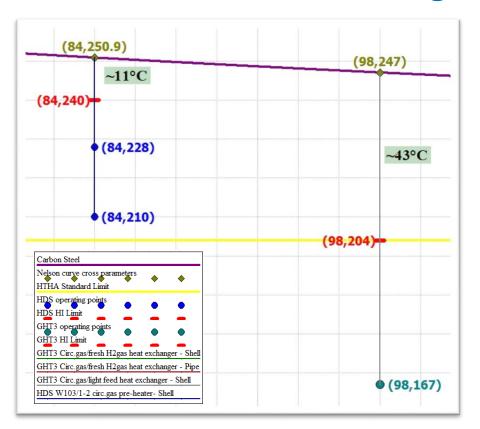
Challenges


- Suitable attributes structure
- Analyses with ONE general equation
- Nelson curves based on material of construction
- Table contains the constants for table lookup
- Calculate the temperature and pressure limits as well

IMPLEMENTATION– Continuous Monitoring / PI Coresight

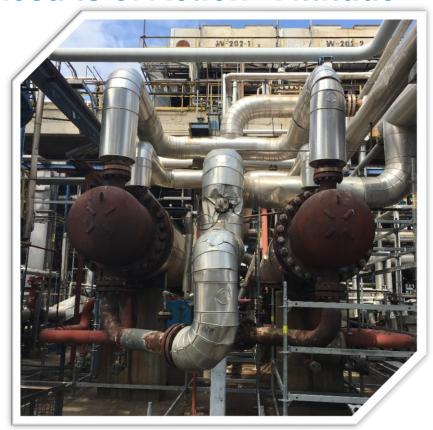

- Support collaboration and decision making
- Visualization management Multi-state symbol

- Easy to use
- Dynamic limits
- Mini trends



IMPLEMENTATION– Message / PI System Notifications

- Immediate problem solving
- Reduced the alerts by 90%
- E-mails include all of the relevant information
- Link to the PI Coresight display
- Contain the intervention possibilities



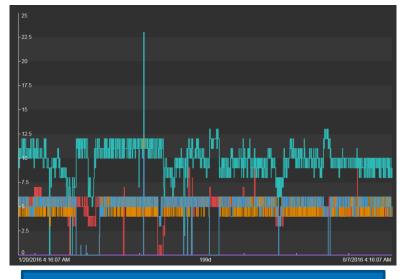
Results of Action – Knowledge

- Deeper understanding of the corrosion processes
- Operating points distance from the Nelson Curve
- Collect the corrosion related parameters in one Asset Framework structure

Results of Action - Attitude

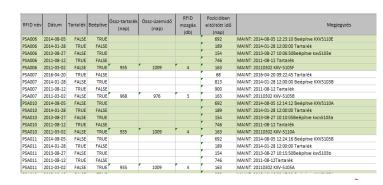
- Reduced corrosion → Cost savings
- Changed the material for a better alloy
- Improved the preventive approach
- Better communication between departments
- Maintenance team has a continuous monitoring tool

Preventive Maintenance aided by connecting the PI System and SAP PM


Challenge – Critical Availability Problems

- Hydrogen Production Plants (HPP) are critical units in the refinery
- Pressure Swing Adsorbers (PSA) are critical equipments in unit operation
- Cyclic operation Heavy load on valves (9-10 open-close hourly)
- \$1.2 million USD loss in three years due to PSA valve failures
- UPTIME program: 97% operational availability

Solution – Preventive Maintenance


- Maintenance Engineering created a preventive maintenance strategy to keep valves in operation
- Problem: Time-based scheduling can not be used
 - Valves in each position are replaced regularly
 - Load on given valve position depends on unit feed
- Process data (Cycle Number) has to be used to schedule maintenance

Hourly cycle number of PSA valves

Phase 1 – Separated OSIsoft's PI System and SAP PM

- Aim: test the maintenance strategy
- Criteria:
 - No CAPEX, no IT development
 - Only existing software, tools
- System:
 - Valve cycle count was collected in the PI System
 - Analysis, data evaluation in MS Excel
 - Manual order creation in SAP PM

	HG2 - 2011.03.02 / HGY 2016-01-01 -óta		
Jelenlegi hely	PSA_szelep ▼	Össz-tartalék (nap) 🔻	Össz-üzemidő (nap) 🔻
F-D-HG2-KXV5101A	PSA098	277	770
F-D-HG2-KXV5101B	PSA026	264	1680
F-D-HG2-KXV5101C	PSA073	319	1462
F-D-HG2-KXV5101D	PSA029	264	1680
F-D-HG2-KXV5101E	PSA077	250	1531
F-D-HG2-KXV5101F	PSA071	250	1531
F-D-HG2-KXV5102A	PSA067	133	1665
F-D-HG2-KXV5102B	PSA069	133	1665
F-D-HG2-KXV5102C	PSA097	116	1665
F-D-HG2-KXV5102D	PSA093	169	1612
F-D-HG2-KXV5102E	PSA087	116	1665
F-D-HG2-KXV5102F	PSA076	356	1425
F-D-HG2-KXV5103A	PSA066	354	1571

Phase 2 – Connection of OSIsoft's PI System and SAP PM

- Aim: robust IT system to support preventive maintenance strategies
- Criteria:
 - Support the scheduling of PSA valve maintenance
 - Flexibility and scalability (further strategies expected)
 - Integrated solution (utilization of existing softwares)
- Tools:
 - PI System → Main process database + Real-time analysis
 - SAP PM → Equipment database + Maintenance management tool
- Missing component: Connection between systems

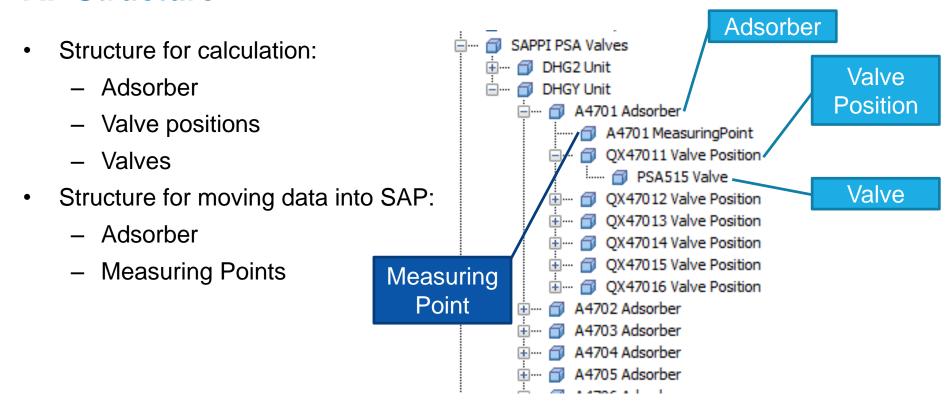
Architecture – Roles of components

PI Server

- Process database
- Online analysis of process information
- Calculation of asset health
 - Asset condition
 - Running hours
 - Performance
- User Interface
 - PI Coresight
 - PI DataLink

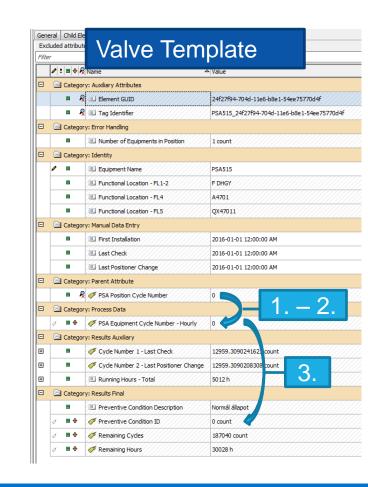
Connection

(WebLogic)


Calculated asset health

Maintenance related information

SAP PM


- Maintenance database
- Management of maintenance processes
- Creation of work orders or notifications
- Trigger maintenance strategies based on asset health

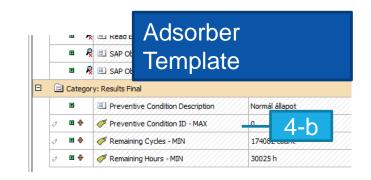
AF Structure

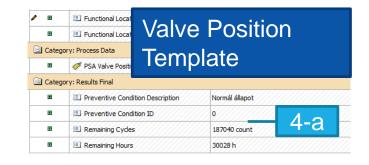
AF Calculation 1.

- Calculation steps:
 - 1. Cycle number of valve positions (PI Points)
 - 2. Cycle number of valves (read the attribute from the current parent)
 - 3. Preventive maintenance state of valves (based on valve cycle number and last repair time)
 - 4. Two aggregation steps (one with formula data reference, one with Roll Up analysis)
 - Collecting results to move data into SAP Measuring Points

AF Calculation 2.

Read Enabled


Category: Results Final

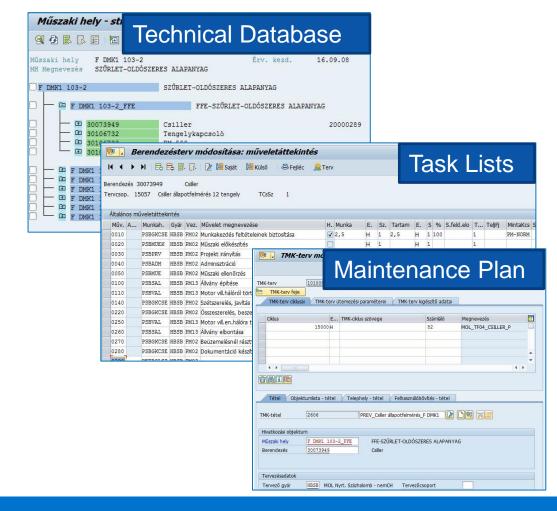

Measuring Point

MP Value

Template

- Calculation steps:
 - 1. Cycle number of valve positions (PI Points)
 - 2. Cycle number of valves (read the attribute from the current parent)
 - 3. Preventive maintenance state of valves (based on valve cycle number and last repair time)
 - 4. Two aggregation steps (one with formula data reference, one with Roll Up analysis)
 - Collecting results to move data into SAP Measuring Points

PI System-SAP Connection


- Collect data from elements with Measuring Point template
 - PI OLEDB Enterprise
 - AF linked table

- Expose these data to the WebLogic middleware (Linux+Java)
 - PI JDBC did not fit into our existing environment
 - WebLogic reads through PI Web API

```
****** Object: View SAPPI MeasuringPoint Results Script Date: 2016
SELECT
FROM [Maintenance].[DataT].[SAPPI MeasuringPoint Results]
Results
           Messages 
                         SAP MP Type SAP MP Unit of Measure SAP Parent Object ID
                                                           F DHG2 V310
        TemporaryMPID 26
                "Columns": {
                  "ElementGUID": "Guid"
                  "SAP Parent Object ID": "String",
                      Parent Object Type": "String"
                  "Error Code": "Int32",
                  "Last Calculation Time": "DateTime",
                  "MP Value": "Double"
                "Rows": [
                    "ElementName": "V310 MeasuringPoint",
                    "ElementGUID": "ff2bdec9-72d2-11e6-84e4-54ee75770d4f
                    "SAP MP ID": "TemporaryMPID 26",
                    "SAP MP Type": "Szamlalo",
                        Parent Object ID": "F DHG2 V310",
                    "SAP Parent Object Type": "Functional Location".
                    "Last Calculation Time": "2016-09-06T09:20:00Z"
                    "MP Value": 0.0
```

Asset Policy – SAP PM

- Maintenance management → Asset policy
- Asset policy:
 - Where to do?
 - What to do?
 - When to do?
- SAP PM covers these functionalities
 - Technical database
 - Task lists
 - SAP maintenance plan based on measuring points (with data from PI System)

Expected Results

- Contribution in strategic operational availability program (UPTIME) goal: 97% Operational Availability
- Preventive maintenance strategies in operation (e.g. PSA valves, Furnace tubes)
 - Estimated reduction of unplanned shutdowns caused by these equipments: 10-15 %
 - Saving due to increased operational reliability of these eqipments: \$230,000/year
- Flexible, scalable system
 - Further assets to be involved in preventive maintenance

Next Steps

- Short-term
 - System roll out for other assets
- Mid- and long-term
 - System roll out for other assets
 - Utilization of advanced analytic possibilities (SAP HANA, PI Integrator for Business Analytics)
- Identification of further possibilities to utilize process data in maintenance

Reliability can be increased significantly with the PI System

COMPANY and GOAL

MOL operates thousands of assets, therefore reliability is a key factor in success; asset availability is a pillar of our efficiency programs.

CHALLENGE

Challenging strategic operational availability goals (97%)

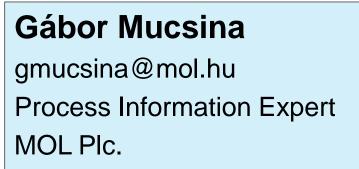
- This level of OA can not be achieved with reactive maintenance
- Critical PSA valve failures have to be prevented

SOLUTION

PI Server-based solution to support operational awareness and preventive maintenance

- Integrity Operating Windows (IOW) and HTHA implementation in PI Server to avoid corrosive, harmful situations
- Connection of PI Server and SAP PM to support preventive maintenance

RESULTS


Effective tools for maintenance engineers to keep asset healthy

- Less corrosive process conditions
- · Longer asset life
- Increased availability of PSA valves (\$230,000/year)
- Flexible architecture for further preventive strategies

Contact Information

Réka Erdei rerdei@mol.hu Process Information Engineer MOL Plc.

Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

http://ddut.ch/osisoft

감사합니다

谢谢

Merci

Gracias

Thank You

Danke

Köszönöm

ありがとう

Спасибо

Obrigado

"In God we trust; all others bring data."

W. E. Deming

