

PI Alchemy **Turning data into Gold**

Presented by Peter Smith, **Metallurgy Superintendent**

Introduction

Alchemy

Any magical power or process of transmuting a common substance, usually of little value, into a substance of great value.

PI Alchemy

The process of transmuting raw data, usually of little value by itself, into Operational Intelligence, so that informed decisions can be made to effectively prioritise and generate value.

About Us

Gold-Silver Dore
Lead-Zinc Concentrate

Automation Consultancy

Commercial Production: 2015

March 2016 : Quarterly Report:

- 83,522 t ore processed
- 14,184 oz Gold
- 5,874 t Pb-Zn Concentrate

Process Control Optimisation
PI System Integration
PI System Management
Software Development

Hera Processing Plant

Hera Processing Plant

The Challenges

The Challenges

- Plant performance needed to be improved
- Operational Insight was difficult to achieve as data was not easy to get, distributed over a number of sources including discrete laboratory reports, process control system
- Time intensive to collate the information needed

How Plant Data Was Acquired

E	F	G	H	1	J	K	L	M	N	0	Р	Q	R
\$A\$8:\$O\$48													
2	2	2	2	2	2	2	2	2	2	2	2	2	2
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1/01/2016	2/01/2016	3/01/2016	4/01/2016	5/01/2016	6/01/2016	7/01/2016	8/01/2016	9/01/2016	10/01/2016	11/01/2016	12/01/2016	13/01/2016	14/01/2016
ME-ICP41a													
Ag													
ppm													
14	9	13	7	8	9	9	10	10	10	8	7	8	9
15	11	8	13	6	9	11	15	8	7	7	7	5	9
6	1	2	2	2	2	2	2	2	1	3	1	1	2
1	1	<1	2	1	2	2	3	1	2	2	1	<1	2
18	1	2	1	2	2	1	2	2	4	2	1	1	2
2	2	<1	3	1	2	1	3	2	2	2	1	<1	2
85	88	46	53	43	52	33	99	99	82	64	47	99	55
	58	24	72	43	38	41	100	53	75	75	61	48	55

DAILY SAMPLE RESULTS

Lab Tech:	Christine						
Date:	1/01/2016						
Au Samples				_			
	Date	Sample	Time	Conc	RSD%	Mean	Comments
	/01/16	CAL 0		0.00	40.50	0.001	
	/01/16	CAL1		1.00	2.00	0.033	
	/01/16	CAL 2		5.00	1.20	0.157	
	/01/16	CAL 3		10.00	1.10	0.302	
	/01/16	CAL 4		20.00	1.40	0.579	
1	/01/16	CAL 5		50.00	0.20	1.213	
1/01/16		Blank		-0.04	69.80	-0.001	
	1/12/15	MC Barren	2000	0.44	1.60	0.015	
	1/12/15	MC Barren (Line)	2000	1.62	2.10	0.052	
3:	1/12/15	MCPLS	2000	22.29	0.50	0.634	
3	1/12/15	MC Barren	0000	3.45	0.7	0.109	
3	1/12/15	MC Barren (Line)	0000	7.54	1.1	0.233	
3	1/12/15	MCPLS	0000	21.63	0.8	0.617	
3	1/12/15	MC Barren	0400	5.01	0.7	0.157	
3	1/12/15	MC Barren (Line)	0400	0.06	9.8	0.003	
3	1/12/15	MCPLS	0400	18.47	1.0	0.537	
3	1/12/15	Tails Liquor	DS	3.67	1.4	0.116	
3	1/12/15	Tails Liquor	NS	0.50	1.6	0.017	
3	1/12/15	ILR Evin Feed	Batch 277	70.03*	0.1	1.701	*OVER RANGE
3	1/12/15	ILR Ewin Feed x10 DIL	Batch 277	37.99	0.7	0.987	379.90
3	1/12/15	ILR Final Wash	Batch 277	42.93	0.9	1.085	
	/01/16	Process H2O	0600	0.46	1.5	0.015	
1	/01/16	MC Barren	0600	5.85	0.7	0.183	
	/01/16	Detox	0600	3.71	1.8	0.118	
	/01/16	MCPLS	0600	20.33	1.0	0.585	
	/01/16	Ewin Spot	0600	53,40*	0.9	1.297	*OVER RANGE
	/01/16	Ewin Spot x5 DIL	0600	10.98	0.9	0.333	54.9
	/01/16	CALO	1300	0.00	99.9	0.000	54.5
	/01/16	CAL 1		1.00	1.6	0.032	
	/01/16	CAL 2		5.00	0.7	0.156	
	/01/16	CAL 3		10.00	0.3	0.300	
	/01/16	CAL 4		20.00	0.7	0.568	
	0110	UAL 4		20.00	0.1	0.000	

- Discrete lab reports
- High compression of plant data (900 data points)
- Manual assembly into Excel

Phase 1 – Installation & Visualisation

12

Initial Business Case for a PI System

Streamline the reporting of Laboratory Assays and historise the assay data for subsequent analysis as required

Provide a repository of process data for key plant, equipment and instrumentation to enhance the operational perspective and allow long term statistical analysis of key data streams

Easy Lab Data Validation & Archiving Into PI System

PI DataLink

Before

- 1 day to update & report 1 month of data for 1 assay
- 1 day history per spreadsheet

After

- 30 mins to update & report 1 month of data for hundreds of assays
- All assays historised

Making It Easy To See What Was Happening

Identifying & Justifying Process Improvement Campaign

Phase 2 – Initial Grinding, Flotation and Cyanide Optimisation

Using the PI System to Measure & Validate Process Improvement

Mill Discharge

Level: +/- 30%

Cyclone Feed

Before

Using the PI System to Measure & Validate Process Improvement

Rougher 3 Froth Levels

Rougher Flotation Cell Levels

Rougher 2 Froth Levels

Rougher 4 Froth Levels

Levels: +/- 80mm to +/- 30 mm

Rougher 5 Froth Levels

Rougher 1 Froth Levels

Using the PI System to Measure & Validate Process Improvement

Rougher Con Flow

Rougher Con Level

Phase 3 – Benefit Realisation

What Does Improved Stability Give Us?

- Improved Grinding Efficiency
- Improved Classification Efficiency
- Reduced wear rates
- Reduced energy consumption
- Reduces reagent consumption

- Reduced spills / cleanups
- Reduced water consumption
- Improved throughput
- Improved plant recovery
- Reduced Operator stress/fatigue

How Much is Stability Worth?

+1% Plant Gold Recovery = approx. USD\$750,000 per annum

Considering:

- PI System Costs
- Installation Costs
- Optimisation Costs
- Small Plant (~ 45 t/h)

+1% Recovery Improvement

12 Day Payback Period

Cascade Loop Development in Key Areas (August)

Before

Tank 5 Cyanide First pass cascade loop

After

Improvement Opportunity – Cyanide Reagent Control

convergio INFINITUM™ – Loop Analytics

Is the measurement within acceptable limits right now?

What % of time has the measurement been within acceptable limits?

convergio INFINITUMTM – Loop Analytics

PID_Template									
Gene	eral	Attrib	ute Templates Ports Anal	ysis Templates					
Filte	Filter								
	⊘ i	i 🔷 🧸	Name \triangle	Description					
			∕ CV	Control Variable					
⊞			CV Parameters	CV Parameters					
			□ ID	PID Loop Number					
			InControl	The status indication of whether the lo					
		•	Performance 1	The % of time the PV is within the upp					
		*	Performance4	The % of time the PV is within the upp					
		*	Performance 12	The % of time the PV is within the upp					
⊞			PID Tuning Parameters	PID Tuning Parameters					
	€ PV			Process Value					
⊞			PV Parameters	PV Parameters					
			⋘ SP	Set Point value					
Đ			SP Parameters	SP Parameters					

Asset Framework (AF)

convergio PI System Monitoring – Using PI to Monitor PI

Phase 4 – Squeezing More Value Out Of The PI System

More Process Improvement Opportunities

- Plant Water Pressure Optimisation
- Flotation Cell Reagent Optimisation
- On Stream Analyser Integration
- Grinding Circuit Reconfiguration
- Flotation Level Advanced Control
- Merryl-Crowe Reagent Optimisation
- Gravity Circuit Optimisation

More Maintenance Improvement Opportunities

- Automatic Equipment Runhours Reporting (AF and Totalisers)
- Automatic Equipment Utilisation & Availability Reporting (AF and PI System Analytics)

Contact Information

Peter Smith

psmith@aureliametals.com

Metallurgy Superintendent

Aurelia Metals

gavin.strack@convergio.com

Director

Convergio

Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

http://ddut.ch/osisoft

감사합니다

Merci

Danke

谢谢

Gracias

Thank You

ありがとう

Спасибо

Obrigado

Cheers Mate

