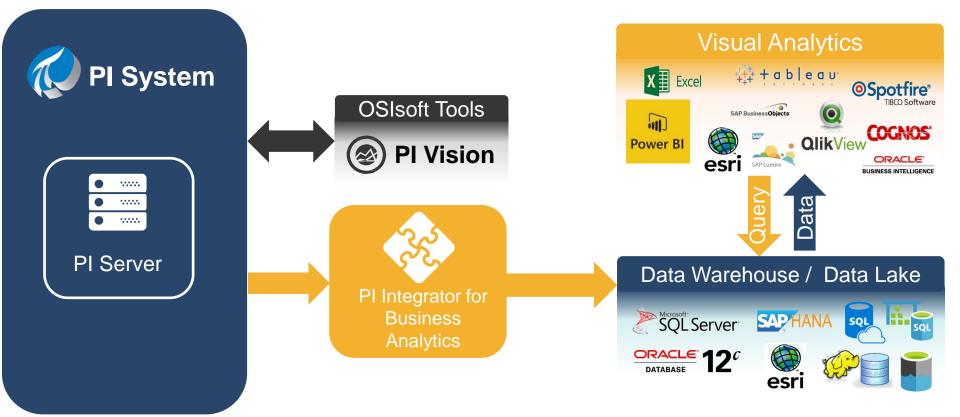

IIoT Data Access with the PI System

PI System Data is Used Across the Enterprise to Achieve Business Impacting Change



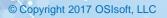
The greatest value of a picture is when it forces us to notice what we never expected to see.

- John Tukey

OSIsoft, REGIONAL SEMINARS 2017

Streaming Data to the Right Places

OSIsoft, REGIONAL SEMINARS 2017


Utilizing PI System Data

PI Vision

Unified visualization infrastructure, your window into operational intelligence

PI Integrators

Blend operational data with business data for complex analyses

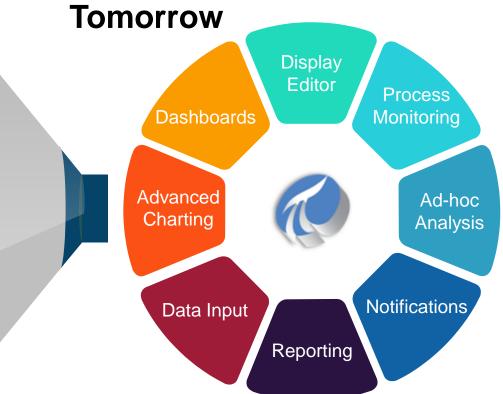
PI Vision

We are embarking on a unified visualization infrastructure to deliver a seamless, powerful, extensible experience

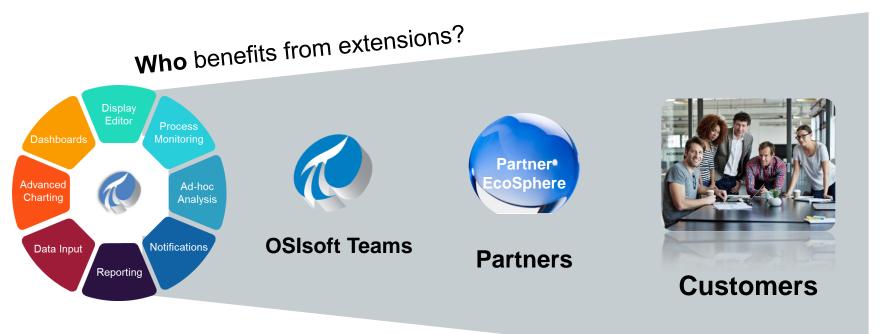
Your window into operational intelligence

A Single Platform for Your Visualization Needs Today Tomorrow

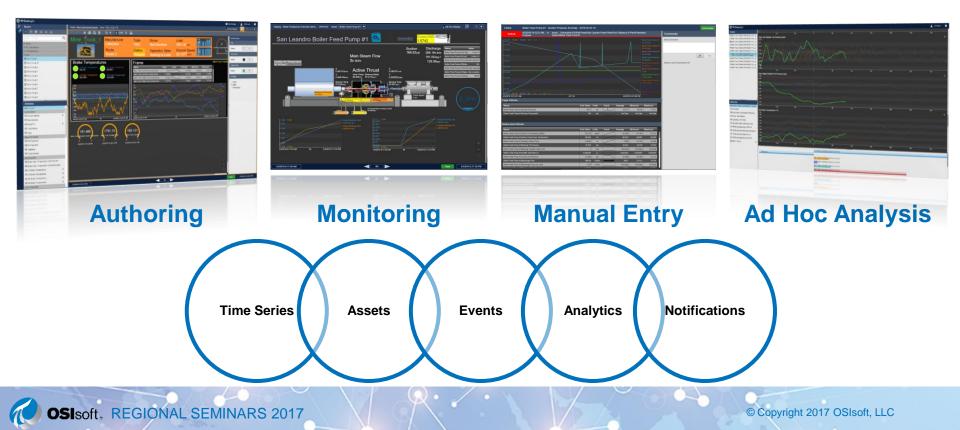
PI ProcessBook Display Editor Process Monitoring



PI Vision Ad Hoc Analysis PB Display Viewer


PI WebParts Dashboards

PI Manual Logger Manual Data Entry


A Truly Extensible Visualization Infrastructure

Modern Visualization for the Modern PI System

What is PI Vision?

The fastest, easiest way to visualize PI System data

ම!

 \mathfrak{O}

뼚

- Access data from any web browser, including mobile device browsers
- Collaborate and share comments across the company
- Deploy and roll-out rapidly

	l Vision ^{oSisoft}	New Display	OSI\hgunterman				
	Display: Mine Truck Overview hpg copy Asset	: Mine Truck 1 🔻 🧳	Ad Hoc Display				
	Mine_Truck_1	Trendin	g hyperlink				
	Name Mine Truck 1 Type Mine Truck 1 Ciperation Sta Mine Truck 1 Ciperation Sta Mine Truck 1 Route						
1	LR Brake Temperature	EF Brake Temperature 28 °F True 28 °F R Brake Temperature 22 °F 100 - 90 - 90 - 90 - 90 - 90 - 90 - 90 -	sks Fleet 13.424				
	232 231 230 210 226 220 59/2016 1:18:11 FM 1h 5/9/2016 2:	RR Brake Temperature 30 - 222 "F 20 - 10 -	— ▶				
	5/9/2016 1:18:11 PM						
		h 🕨	Now				
1	© Copyright 2017 OSIsoft, LLC						

PI Integrators: Blending data to ask complex questions

PI System Users Need to Solve a Variety of Complex Questions

Disparate assets or one-by-one interactions

Interacting with common assets as a fleet

System Optimization

Monitoring

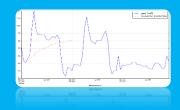
Real-time visibility

• HMI

Real-time & historical views across any plant asset

Process Optimization

PI VisionPI Datalink


Benchmarking

Fleet-wide performance comparisons

- Bl Apps (i.e. Tableau, Spotfire, Lumira)
- PI Integrator for Business Analytics
- SAP HANA IoT Integrator by OSIsoft

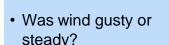
Large scale multi-variate analysis

- Machine Learning (Azure ML, R)
- PI Integrator for Business Analytics
- SAP HANA IoT Integrator by OSIsoft

OSIsoft, REGIONAL SEMINARS 2017

Data Integration can Address Big Questions

Mining


Oil & Gas

- What material is being
- Was it raining?

hauled?

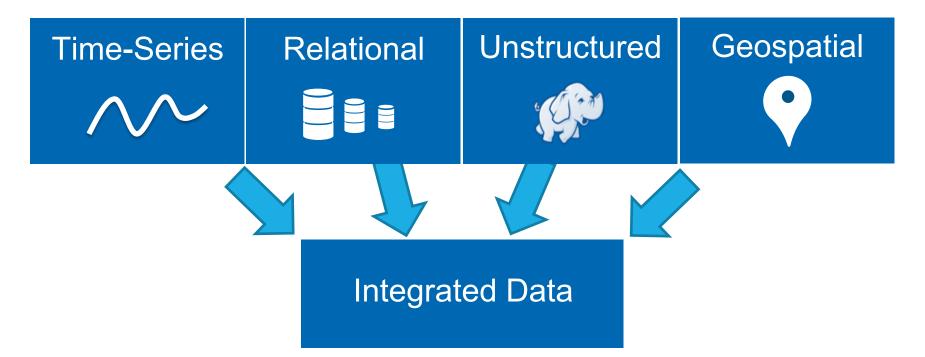
- Were there holes in the road?
- What is the grade of the hill?
- Was there scheduled downtime?
- Are there different driving behaviors?

- When did the geology change?
- Which well was being drilled?
- What angle was the drill bit?
- Is production related to drill conditions?

Wind Power

- Was the maintenance planned?
- How long does this issue usually take to fix?

Pharmaceuticals


- What product is being made?
- When is the equipment empty?
- Where was the instrument when I took that measurement?

Transmission & Dist.

- How are renewables impacting equipment?
- Was there a voltage violation?
- What are the changes in weather?

Data Integration Brings Together Different Data

Integrate, verb: combine (one thing) with another so that they become a whole

Time-Series Data is Complex!

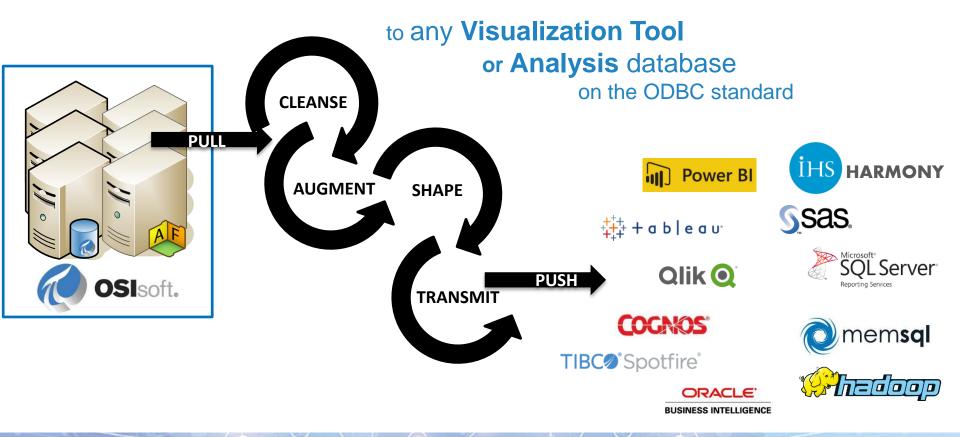
Data Integration Projects are Challenging

Time

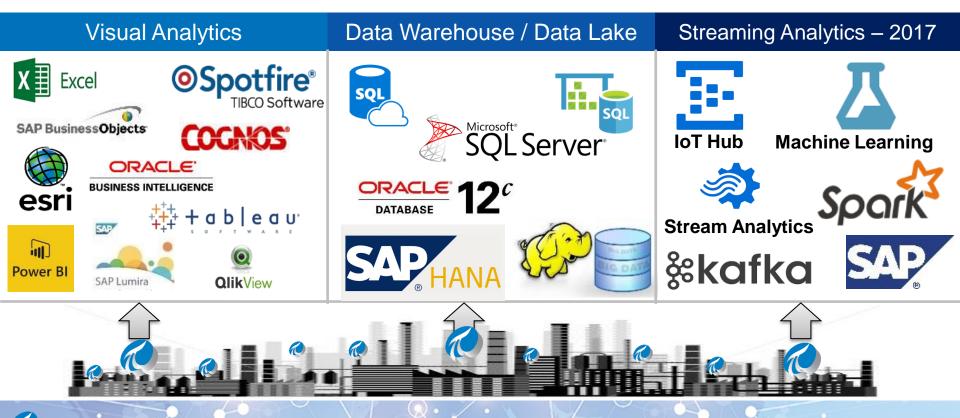
Expense

Risk

Warning: Currently, data analysts spend 50-80% of their time merely collecting and preparing data¹


Warning: data integration often requires ongoing upkeep

Warning: If "why?" for the project is not clearly communicated, business barriers will delay and risk the project


¹https://hbr.org/2014/04/the-sexiest-job-of-the-21st-century-is-tedious-and-that-needs-to-change/

OSIsoft, REGIONAL SEMINARS 2017

Prepare and Deliver Process Data

Advanced Integrations: Supported Systems

OSIsoft, REGIONAL SEMINARS 2017

What Can This Look Like?

Example application: Comparing data from smart badge sensors

Badges worn by individuals track environmental conditions in different areas

Badge data is streamed in real-time to an OSIsoft PI System

- 1. Smart badge sensors generate data
- 2. The PI System collects, manages, and enhances that data
- 3. Our goal: use SAP HANA to detect patterns in the data stored in the PI System

Solution: a PI Integrator can publish data from the PI System into SAP HANA!

Elements	Smart Badge G				
♣ Elements 亩… @ Controlled Areas	General Chil	Elements Attributes Ports Analyses	Notification Rules Version		
🖆 🗊 Controlled Areas					Group by: 🔽 Category 🗖 Templ
🖻 🚽 🗇 Personnel Monitoring	Filter				• م
🚊 – 🗃 Smart Badges		🕈 🧏 Name	A Value	Time Stamp	٥
🗇 Smart Badge B 🕣 Smart Badge G	🗆 🖻 Cab	egory: Ambient Environment			
🗇 Smart Badge R 🗇 Smart Balge Y	, D	🍼 Humidity	42,689998626709 %	5/13/2017 5:44:29 PM	
Element Searches	ø B	of Pressure	985.919982910156 hPa	5/13/2017 5:44:29 PM	
	J	🎺 Temperature	81.0999984741211 °F	5/13/2017 5:44:29 PM	
	🗆 🖻 Cab	egory: Personnel			
		Activation Period	May 2017	1/1/1970 12:00:00 AM	
		🗉 Assigned Individual	User # 5E 19754 T	1/1/1970 12:00:00 AM	
		Contact Information	1 215 606 0705	1/1/1970 12:00:00 AM	
	🗆 🖻 Cab	egory: PI System Configuration			
		💷 Target PI DA Server	vcvcust1	1/1/1970 12:00:00 AM	
	🗆 🖻 Cab	egory: Specifications			
		🗉 Chipset	ESP8266	1/1/1970 12:00:00 AM	
	D	Communications Mode	Wi-Fi	1/1/1970 12:00:00 AM	
	E	E Power Source	USB / 2xAAA	1/1/1970 12:00:00 AM	

vcvCUST4.pro.coil

-14

_ 8 ×

_ 8 ×

1	Elements	

Event Frames

🎁 Library

🚥 Unit of Measure

🎎 Contacts

(Administrator)

2015-2016 2017 Future Available Today Available Considered (2018) **Business PI Integrator for Business Cloud Platforms** More Platforms Intelligence Analytics Microsoft Azure ESRI ArcGIS GeoAnalytics . Microsoft SQL Server, Oracle & Data HANA Cloud Platform (5/2017) AWS Redshift • Hadoop (HDFS/HIVE) Teradata Warehouses **PI Integrator for SAP HANA** Considered (2018) **Real-Time GIS** Planned (2H 2017) Stream Systems **PI Integrator for Esri ArcGIS** Stream Systems Streaming AWS Kinesis Situational Awareness Azure Event Hubs, IoT Hub **Systems** Real-Time Geoprocessing Apache Kafka Import ESRI features (assets) SAP SDS (Available) Planned (Q4 2017) Planned (2018) · Process Scale out All Integrators on common **PI Integrator** SSL / HTTPS Framework (ESRI) Framework Node Scale Out and HA Research Research Research Enable business process IoT Platform Integration Enable partners and customers **New Integration** orchestration with PI System with 3rd parties to build applications and interact **Patterns** data - workflow, asset sync, programmatically using

transaction-like data, MES

PI Integrator Framework.

OSIsoft. REGIONAL SEMINARS 2017

Customer Example: Deschutes Brewery

Leveraging the PI System and Cortana Intelligence to Increase Process Efficiency

COMPANY and GOAL

Deschutes Brewery is the 7th largest craft brewery in US, and wanted to maximize production with its existing infrastructure to fund construction of a 2nd brewery in Roanoke, VA

CHALLENGE

Batch's phase transition happens between manual density measurements occurring every 8-10 hours

• Impact: Losing up to 72 hours in production time

SOLUTION

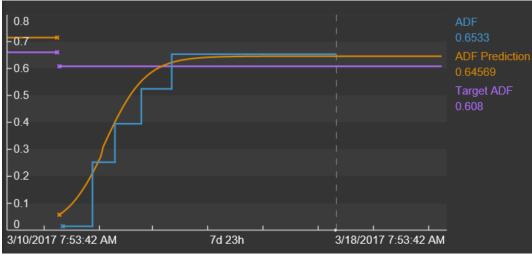
Use data science to achieve accurate predictive analytics for determining a batch's density measurements

- PI System
- PI Integrator for Microsoft Azure
- SQL Data Warehouse
- Azure Machine Learning
- Azure Data Factory

RESULTS

- Ability to eliminate production time losses and increase production capacity
- Accurate predictions of when a batch's phase transitions from fermentation to free rise

🕡 🕼 🚺 OSERS CONFERENCE 🔹 BERLIN, GERMANY


© Copyright 2016 OSIsoft, LLC

17

Detecting Early Deviations and Taking Corrective Action

Black Butte Porter – Vessel 45

Indications:

Uncharacteristic fermentation

Actions taken:

Transition to free rise early

Results:

- Production time reduced
- Batch saved
- Quality maintained

Contact Information

Jason Little

jlittle@osisoft.com

Systems Engineer

OSIsoft, LLC

Questions

Please remember to...

Please wait for the **microphone** before asking your questions

State your name & company

Complete the Post-Event Survey

