From Historical to Actionable:

ERCOT's Changing Use of the OSIsoft Ecosystem

Agenda

- ERCOT overview
- Review PI System usage
 - Asset Framework buildout
 - Data integration
 - Prototyping
 - Control room visualizations and tools
- Questions

The ERCOT Region

The interconnected electrical system serving most of Texas, with limited external connections

- 90% of Texas electric load
- 75% of Texas land
- 71,110 MW peak, August 11, 2016
- >46,500 miles of transmission lines
- 570+ generation units

NPCC MRO WECC SERC FRCC Western between regions/balancing SPP Interconnection Eastern Includes El Paso and 820 MW Interconnection Far West Texas and the Panhandle region TRE **ERCOT** Interconnection **CFE** 430 MW

ERCOT connections to other grids are limited to ~1,250 MW of direct current (DC) ties, which allow control over flow of electricity

So What Exactly Are ERCOT's Goals?

- Maintain a reliable power grid for the ERCOT interconnection
 - Coordinate planned and unplanned outages
 - Ensure the balance between load and generation
- Provide a competitive wholesale and retail market
 - Allow for retail switching (pick your power provider)
 - Dispatch generation at the least cost while accounting for transmission and temporal constraints

ERCOT PI System Metrics

- Started using PI in 2004
- ~ 530k tags
- ~ 40k assets modeled
 - Units, loads, lines, shunts
- Update tags and AF model on a weekly basis
- Multiple production environments
 - Secure and corporate

Control Room Visualizations: Now

ERCOT Control Room Wallboard

Display data sources include...

- Excel
- EMS displays
- Macomber Map
- ProcessBook displays

Roughly 50% of the wallboard real estate is ProcessBook

Ownership Change

Grid Application Development's Role

Business requires a wide variety of tools and services to effectively do their job

IT does a good job of creating applications and groups to fulfill these requirements

However there will always be gaps in what is needed and what is delivered

GAD Works To Fulfill The Remaining Needs

- Grid Applications Development (GAD) reports to Business as opposed to IT
- 4.5 person group
- Work directly with engineers and operators
- Iterative approach to deliveries
- Example tools
 - Report (Excel) management
 - User-developed-application monitoring
 - And now, OSIsoft-related applications

Asset Framework

Developing Asset Framework: Foundational Work

A <u>well-crafted</u> and <u>accurate</u> Asset Framework model is key to ERCOT's current and future successes.

Initial Asset Framework Buildout

- ERCOT began working on the Asset Framework model in 2015
- First activities were to attend the "Building PI System Assets and Analytics" training in Houston
- Had to design model which "fit" into existing PI tag structure
 - Not all devices had the same tags
 - Creating template hierarchies was key to future success

Creating the Power Systems Model

- ERCOT's grid model is maintained by the "Market Participants"
- Changes are submitted with an effective date

A new model is created every week

AF Data Is Created In The Weekly Model Build Process

Loading "Model-Driven" Assets

- Removing and then importing the "Model" section takes too long
 - Calculations are down during this time
- Developed scripts to create an incremental AF model file
- Utilize Extended Properties to capture renames
- AF model "guaranteed" to match source systems
 - Calculations and displays driven by these assets stay up-to-date

Same Element Is Accessible Through Multiple Hierarchies

- Allows for easier user navigation
- Key to providing new aggregate calculations
- Allows displays to be "model driven" by different hierarchies

Asset Framework – ERCOT Takeaways

- Invest the time to carefully design your templates, analyses, and hierarchies.
- A programmatic approach to maintaining the AF model is a must
- Take advantage of existing modeling tools wherever possible

Future AF Plans: Converting Operations...

...To Planning

- Familiar naming conventions
- Aggregate load and unit values
- More customers!

Data Integration

Original Data Source: Energy Management System

- Flows from Units, Transformers, Lines, etc.
- Status of breakers and switches
- Field telemetry updating every 4-10 seconds
- Estimator values updating every 5 minutes
- Tools could only show EMS data

If the Report Needs More Than Pl...

- Excel spreadsheets!
 - Combines Oracle and PI data
 - Ugly
- IT reporting tools?
 - Potential for ~8 hour lag
 - Unacceptable staleness

7-Day Outlook Report

There are More

...and More

ercot 🢝			ERCOT				
		Reliability					
,		Itemability	10/20/2017	or itepor	. •		
Weather Information:							
	Austin	Brownsville	Corpus Christi	Dallas	Houston	Midland/Odessa	San Antonio
High:	80	83	81	81	77	79	81
Low:	43	57	49	45	46	45	48
Conditions:	Sunny	Partly Cloudy	Partly Cloudy	Sunny	Partly Cloudy	Sunny	Partly Cloudy
RCOT RC Footprint Load Data	:						
All-Time Summer Peak MW - 08/11/16		1187					
All-Time Winter Peak MW - 01/06/17		940					
Fall Seasonal Peak MW							
Projected Peak MW		0.00					
Projected Peak Hour		1					
Previous Day Actual MW		0.00					
Peak Hour	eak Hour Da	ata:					
Interchange MW		esc.					
ERCOT RC Transmission Line C	Outages:						
		(Line Segments)					
ERCOT Footprint Generation M							
Scheduled Outage (MW Total)		2000					
Forced Outage (MW Total)		MA.					
Total MW	1	5.000					
ERCOT Projected MW Reserves	Data:						
Required MW		100					
Projected MW		650					
Meet Requirement	_	Tee					

...and More

DAY	HR	HIGHEST LF	ONLINE HSL	NET CHANGE HSL/ LOAD/DC	ONLINE HASL	ONLINE ROOM	NSPIN	DC TIE	WIND WGRPP FORECAST	ERCOT_I	ERCOT_A3	Areva_A6	ERCOT_E	ERCOT_E1	ERCOT_E2	ERCOT_E3
10/25/2017	1	1980	58.545		Section 1	1000	1000	100	7.754	28623	28850	20998	28617	28623	28582	28691
10/25/2017	2	379.00	3400	1994	20,000	1007	1000	7.9	1-679	27504	27678	27601	27475	27504	27075	27547
10/25/2017	3	1.5	20079	100	2000	100	608	- 0	4798	27149	27074	27141	27090	27149	27138	27150
10/25/2017	4	27967	35300	- 154	10000	900	1000	1.0	20.0	26969	27065	27123	26916	26969	27067	26987
10/25/2017	5	17950	100.00	685	100.00	7054	2000	100	7.004	27723	27850	27784	27675	27724	27776	27743
10/25/2017	6	10.00	380-0	404	36.00	40.00	1000	1.00	3000	29497	29722	30142	29445	29497	29056	29512
10/25/2017	7	3,000	10000	400	200	1000		100	344	32756	32902	33971	32783	32756	32650	32867
10/25/2017	8	1.000	1800	1000	20000	1404	1986	200	1 107	34455	34893	35415	34350	34455	34439	34446
10/25/2017	9	200	4867	-000	1800	4947	100	100	400	34097	34778	34957	34253	34097	35239	34331
10/25/2017	10	20020	40709	400	2007	375	199	100	3404	35069	34272	33652	35158	35070	34763	35220
10/25/2017	11	35000	28600	4000	2000	100.0		- 40	201	34968	34230	34179	35259	34968	34930	35342
10/25/2017	12	1000	3600	- 84	2660	100	1946	628	100	35139	35014	35033	35255	35139	35101	35334
10/25/2017	13	100.40	1994	1101	38.67%	25.57	1995	140	1718	35557	35710	35656	35340	35557	35477	35421
10/25/2017	14		1994	203		200	1940		Table 1	36410	36495	36495	36104	36410	36131	36186
10/25/2017	15	37780	400.75	- 646	26.00	080	100	100	1300	37452	37845	37667	37149	37452	36485	37263
10/25/2017	16	36044	10000	1084	2010	_	10.0	100	2304	38900	39054	38634	37981	38900	36835	38243
10/25/2017	17	4000	100	1986	19019		3500	100	2.004	40032	39958	39841	38528	40032	37580	39072
10/25/2017	18	\$100.0	40000	46	200.00	40.00	2000	4.0	1.00	39951	39483	39420	38513	39951	37804	39090
10/25/2017	19	30000	40,000	- 60	26.00		1000	400	3896	39068	38662	38866	37778	39068	37192	38571
10/25/2017	20	349.04	10410	403	2000		1000	- 0	800	39826	39033	39364	38672	39826	38090	38980
10/25/2017	21	1004	14.00	1400	1000	100	1000	100	100	39061	38171	38323	37940	39061	37618	38262
10/25/2017	22	1796	45.00	75.00	40000	346	1000	1.0	9000	37080	36330	38555	36213	37080	36159	36310
10/25/2017	23	3-04	38.00	100	2000	2000	1000	100	1000	34642	33620	33781	33511	34642	33559	33599
10/25/2017	24	1 100	26.00	2011	2000	10.04	100	1079	+083	31998	30964	31087	30869	31998	30896	30736
10/26/2017	1	200.87	16.00	1908	1666	7000	100	1 140	STATE	28868	28988	29084	28776	29687	28868	28424
10/26/2017	2	3874	20.000	14.1	(2004)	1000	100	500	10411	27787	27913	27918	27655	28764	27787	27326
10/26/2017	3	1000	1000						1,000	27609	27215	27258	26938	28332	27609	26744

Replacing Excel in the Control Room

- 2018 goal is to reduce the amount of Excel in the Control Room
- To do so we need a tool which can:
 - Integrate disparate data sources
 - PI System data
 - Oracle data
 - Static data
 - Create decent charts and tables

First Step in Data Integration: Asset Framework

New Data Sources: Oracle Data Via Table Queries

Table Queries

- Query source database at a regular interval
- Bring results into an Asset using table lookups
- Write results to a PI tag using analytics
- First time we were able to historize Market-sourced information in PI

New Data Sources: Oracle to PI Tag

RDBMS-PI: Put Query Results into PI

- Multiple values can be written to the same tag
- First time we introduced future data on a single tag

_				
	TAGTIME	TAGNAME	TAGVALUE	TAGSTATUS
١	10/23/2017 2:00:00 PM	1RDB.MTLF.ERCOT_A3	41048.796875	0
	10/23/2017 3:00:00 PM	1RDB.MTLF.ERCOT_A3	42597.29296875	0
	10/23/2017 4:00:00 PM	1RDB.MTLF.ERCOT_A3	43685.76171875	0
	10/23/2017 5:00:00 PM	1RDB.MTLF.ERCOT_A3	42881.88671875	0
	10/23/2017 6:00:00 PM	1RDB.MTLF.ERCOT_A3	41731.21875	0
	10/23/2017 7:00:00 PM	1RDB.MTLF.ERCOT_A3	41715.26953125	0
	10/23/2017 8:00:00 PM	1RDB.MTLF.ERCOT_A3	40378.53515625	0
	10/23/2017 9:00:00 PM	1RDB.MTLF.ERCOT_A3	38071.1484375	0
	10/23/2017 10:00:00 PM	1RDB.MTLF.ERCOT_A3	35148.26171875	0
	10/23/2017 11:00:00 PM	1RDB.MTLF.ERCOT_A3	32278.478515625	0
	10/24/2017	1RDB.MTLF.ERCOT_A3	30033.76953125	0
	10/24/2017 1:00:00 AM	1RDB.MTLF.ERCOT_A3	28763.546875	0
	10/24/2017 2:00:00 AM	1RDB.MTLF.ERCOT_A3	27814.41015625	0
	10/24/2017 3:00:00 AM	1RDB.MTLF.ERCOT_A3	27392.013671875	0
	10/24/2017 4:00:00 AM	1RDB.MTLF.ERCOT_A3	27734.06640625	0
	10/24/2017 5:00:00 AM	1RDB.MTLF.ERCOT_A3	29219.64453125	0

Query Results

Written to Tag

Combining Future and Historical Data

ERCOT System Load

Starting the Transition: Valley Outlook Replacement

Data Integration: ERCOT Takeaways

- Integrating external data into the PI System is easy with Table Queries and RDBMS
- Table Queries are useful for lookup attributes or single values
- RDBMS is a great tool for incorporating future forecasts into PI

(Fast) Prototyping

Custom Development In Core Applications

- ERCOT creates custom code and calculations for the Reliability and Market applications
- 6 major releases a year
- Changes to these systems often have a lead time of 5-6 months
- Fixing oversights and tweaking calculations can extend projects/enhancements unnecessarily
- Missed requirements are not found until implementation starts

Asset Framework For Prototyping

- Due to the carefully created AF structure we can very rapidly create analyses and prototype solutions
- GAD's changes do not have a long lead time like the core applications
 - AF model/calculations are updated weekly.
- Calculations "hide" is AF instead of the changing the core applications.
- AF is able to use and combine different data sources

Prototyping New Tools: Reliability Risk Desk

- In 2015 ERCOT determined a new desk, the Reliability Risk Desk, was needed
- Main goal is to manage moreinfrequent but potentially severe risks
 - Inertia, Renewable ramping events, forecast errors
- New desks require new tools!

New Desk = New Requirements

- New Calculations
 - Example: Curtailed MWs for Wind and Solar Units

New Desk = New Requirements

- New Wind Regions
 - Different geographical regions behave differently.
 - Need aggregated values for each region.

New Desk = New Requirements

- New Data Sources
 - Forecast and Future Operating Plans do not exist in EMS.

Renewables Templates Allowed For Focused Implementation

Fully modeled representation of Solar and Wind Units

New AF Calculations Only Applied to Desired Units

- Generating unit assets define complex analyses
- Results are written to PI and rolled up for high-level view
- Example: curtailed generation calculates how much wind/solar was "held back" due to a constraint on the grid

Name	Expression	Value	Output Attribute
Curtailment	Max('HSL' - 'MW', 0)	0	Мар
LastSBBH	PrevVal('SBBH', '*-5m')	1	Мар
LastRST	PrevVal('RST', '*-5m')	ON	Мар
WasCurtailed	Not BadVal(LastSBBH) And Not BadVal(LastRST) And LastSBBH And LastRST <> "ONTEST"	True	Мар
IsCurtailed	Not BadVal('SBBH') And Not BadVal('RST') And 'SBBH' and 'RST' <> "ONTEST"	True	Мар
Result	If IsCurtailed Or WasCurtailed Then Curtailment Else 0	0	CurtailedMW

New AF Hierarchies Modeled With AF

- Texas counties grouped into "wind regions" with common meteorological characteristics
- Rollup analyses to county and wind levels for key quantities:
 - Wind/solar generation and HSL
 - Curtailed wind/solar generation
 - Number of turbines on

Rollup Analyses with OLEDB Queries

- OLEDB queries used for more complicated rollups
- Useful when history/backfilling is not needed
- Allows multi-level rollups with less "clutter"

Overview Page: Renewable Forecast vs. Planned Output

Coastal Wind Drill Down Display: Renewable Forecast vs. Planned Output

Future Prototyping Plans: Reactive Power Displays

In 2018 we will start work on Dynamic Reactive Power displays

Prototyping in AF: ERCOT Takeaways

- Reduces implementation time in "core" systems
 - Less rework
 - Requirements are in the prototype
- Easier to integrate new data sources for new calculations
- Testing "core" deliverables easier against prototypes

Control Room Visualizations

Not Too Long Ago...Excel and EMS Displays

Another View

Pushing the Limits of Excel

Slowly Removed Excel

Transitioned From Excel To ProcessBook

The most visible use of the PI System in on the Control Room wallboard

Basic ProcessBook Framework

- All displays are located within a single ProcessBook file
 - 60 MB file
 - 132 unique displays
 - Easy to share "global"
 Datasets between displays
- Operators "share" a read-only copy
- Same file can be used in the non-Secure network by using a Server Alias

Basic ProcessBook Framework

- Displays use a combination of MultiState and VBA logic to highlight issues
- Significant amount of code used to keep text aligned
- Heavy use of error protection to handle failovers
- 37 separate "deployments" in 2017 (through October)

Wallboard Display - Alarms

Alarm display spans across middle of Wallboard and is divided by Operator role

Desktop Tools: Main Operator Dashboard

Next Steps: Transitioning Beyond ProcessBook

- ProcessBook does not natively work with AF
- Cannot fully utilize the AF model
 - For example: Have to create a separate display for each County in the state.
- Maintenance is difficult
 - Source control is hard
 - Layout is done by hand as opposed to programmatically

Transitioning to ERCOT's OpsTools Framework

What is The OpsTools Framework

- Framework to:
 - Create browser-based dashboards
 - Use the PI WebAPI to access the AF model and PI data
 - Utilize the best-of-breed technologies
 - Angular
 - Highcharts
 - Bootstrap

Benefits of The OpsTools Framework

- Easier deployment
 - Everyone uses the same version
 - No software installs (besides the browser)
- More powerful presentation-layer capabilities
- PI Web API allows for "querying" of AF data
- The same display can be used for many different contexts
- Larger talent pool

Reliability Risk Desk: Curtailment Display

Double-clicking on the Solar chart

Takes you to a details page of Solar resources

All Drill Down Capabilities Follow the AF Hierarchy

Longest Living Spreadsheet at ERCOT: Real Time Values

	_	- 10		rn Zone	-			Total generati		3736	-	GTC		0.9	Limit	Panhandle Wil	ND.	-		1413	-
					-		_		on												
OECCS_CT11		PBSES_CT1	0	MGSES_CT1		ECEC_G1	0	OKLA	0	Avail QSGen	910		321		9999			MIAM1_G1		LHORN_UNIT2	55
OECCS_CT12	147	PBSES_CT2	0	MGSES_CT2		ECEC_G2	0		0			N_TO_H	1189			BRISCOE	75	MIAM1_G2	23	MARIAH_NORTE1	40
OECCS_CT21		PBSES_CT3	0	MGSES_CT3	0		0					PNHNDL	1400			COTPLNS_COT			54	MARIAH_NORTE2	40
OECCS_CT22		PBSES_CT4	0	MGSES_CT4		SOLARA_UN1	105	CARBN	0			POMELO	6.1	0%	9999			HRFDWIND_V	73		
OECCS_UNIT1	158	PBSES_CT5	0	MGSES_CT5	0	LASSO	41	LMESASLR	85			REDTAP	25.4	0%	9999	GRAND COLA	15	HRFD_JRD1	74		
OECCS_UNIT2	157		0	MGSES_CT6	0	AEEC ANTLP_1	0	QALSW GT1	0	North DC Tie		VALIMP	114	10%	1127	GRAND COLB	16	HRFD_JRD2	80	PH1_UNIT1	9
	920	FLCNS_UT1	0		0	AEEC ANTLP_2	0	QALSW GT2	0	DCTMG1	0	ZO_AJO	34.1	0%	9999	GRAND GV1A	0	LHORN_UNIT1	55	PH1_UNIT2	12
BOOTLEG_UNIT1	0	FLCNS_UT2	0	WFCOGEN1	0	AEEC ANTLP_3	0	QALSW STG1	0							GRAND GV1B	0			PH2_UNIT1	9
HOVEY UNIT1	20	FLCNS UT3	0	WFCOGEN2	0	AEEC ELK 1	0	QALSW GT3	0											PH2_UNIT2	9
HOVEY UNIT2	6	_	0	WFCOGEN3	0	AEEC ELK_2	0	QALSW GT4	0					Western WIND (co	ont)					ROUTE 66	55
REROCK UNIT1	71	ACACIA_UNIT_	7	WFCOGEN4		AEEC ELK_3	0	QALSW STG2	0	Keo Sherbino2	58	LnCrk G83	21	Owf Owf	10	SRWE1	60	Sweetwn4 4B	20	SALTFORK_UNIT1	5
REROCK UNIT2	67	SIRIUS	157		0		0		0	Keo sm1	50	LnCrk G871	13	Pc north Pthr1			42	Sweetwn4 5	17	SALTFORK_UNIT2	9
				Western \	WIND		_		_	KING NE	13	LnCrk G872	9	Pc south Pthr2		SPTX12B	154		29	SPLAIN1 WIND1	49
Braz Wnd 1	42	Callahan 1	0	Elb Creek		H_Hollow 1	0	Indi Inadale2	24	KING NW	17	McDld FCW1	10	Pc south Pthr3		Stwf T1	19	Tkwsw1 Rosc	0	SPLAIN1 WIND2	47
Braz Wnd 2	20	Capridge 1	49			H Hollow2 1	0	Indi ESS	0	KING SE	7	McDld SBW1	22	Pyr Pyron1&2		Sw_Mesa	19	Trent	19	SPLAIN2 WIND21	72
Buff Gap 1	25	Capridge 1		Fluvanna 1		H Hollow3 1	0	INDNENR 1	32	KING SW	18	Mesacrk WND1	14	Pyr Pyron ESS		Swec 1	25	Ttwec G1	27	SPLAIN2 WIND22	70
Buff Gap 2 1	21	Capridge 3		Fluvanna 2		HICKMAN 1&2		INDNENR 2	34	LGD	22	Mesacrk WND2	9	RdCanyon 1		Sweetwnd 1	3	Vertigo	36	SSPURTWO	13
Buff Gap 2 2	21	Capridge 3	21	Goat Goatwind		HORSECRK UN1	0	INDNNWP	28	Lonewolf G1	11	Mozart Wind	6	Rsnake 1		Sweetwind 1	17	Wec WecG1	34	SS3WIND1	14
Buff Gap3	37	Csec 1	45	Goat Goatwind		HORSECRK UN1	24	INDIAMAN	20	Lonewolf G2	13	Mwec G1	62	Rsnake 2		Sweetwn2 24		Woodward 1	20	SS3WIND1	15
			41				0		_				3	Salvation 1&2				Woodward 2	19	WAKEWE G1	
Bullcrk 1	13	Csec 2		Gpasture		H_Hollow4 1			_	Lonewolf_G3	6	Nwf_nwf1				Sweetwn3 3A	6				76
Bullcrk 2	15	Dermott	161	Gunmtn	0	HWF_1	0			Lonewolf_G4	/	Nwf_nwf2	4	Signal Mt	6	Sweetwn3 3B		TOTAL West	WIND	WAKEWE G2	94
					_	Indi Inadale1	16					NBOHR	0			Sweetwn4 4A	23	2255	-		
			_		_			Southern	Zone		_		_		_		_	Total ger	neration	11095	
South Wind	359	South Wind		South West	_	Corpus		San Antonio		W Austin		E.Austin		Austin		Victoria	-	Victoria			
Anacacho	9	Sendero		EAGLE_HY1	5	INGL_CTG1	0			BUCHANG1	0	GIDEONG1	0	AUSTING1	0	VICTORG5	0	STP_G1	1315		
Baffin 1&2	10	TGW T1 & T2		EAGLE_HY2	0	INGL_CTG2	0	CALA_JKS1	318	BUCHANG2	0	GIDEONG2	0	AUSTING2	0	VICTORG6	0	STP_G2	1311		
BORDAS	0	White Tail	0	EAGLE_HY3	0	INGL_STG	0	CALA_JKS2	0	BUCHANG3	0	GIDEONG3	0		0		0		2626		
BORDAS2	0				5	Gregory/INGL	0	CALA_JTD1	168		0		0	S. Austin		FORMOSG1,2	0	CALHOUN 1	0	RAS Name	%Trip
Bbreeze 1&2	0			LAREDOG4	0			CALA_JTD2	136	WIRTZ_G1	0	WIPOPA_1	0	GUADG_G1	0	FORMOSG3,4	0	CALHOUN 2	0	ALLEN XF	40.7
Cameron Wind	18			LAREDOG5	0	OXY_CC	0	CALA_OWS1G1	0	WIRTZ_G2	0	WIPOPA_2	0	GUADG_G2	141	FORMOSG5,6	0		0	BDAVIS	24.9
Cedro Hill 1	0	RedGate_AGRA	0		0	VISTRON12	12	CALA_OWS1G2	0		0	WIPOPA_3	0	GUADG_G3	154	FORMOSG7,8	0			ESKOTA	23.2
Cedro Hill 2	0	RedGate_AGRE	0	ECLIPSE_UNIT1	34	LGE_LGE_GT1	0		622	MARSFOG1	0	WIPOPA_4	0	GUADG_G4	156	FORMOSG9,10	0			HHGT	25.2
Callahan	28	RedGate_AGR0	0	HELIOS	95	LGE_LGE_GT2	0	BRAUN_AVR1_CT1	122	MARSFOG2	0		0	GUADG_S5	78	FORMOSG11,12	2 0			MBDSW	30.0
Cotton	1	RedGate AGRE	0			LGE LGE STG	0	BRAUN AVR1 CT2	117	MARSFOG3	0	N.E. Austin		GUADG S6	166		0			MGSES 14030	1.4
H Hollow GT 1	55		0	FALCONG1	0	ICP	0	BRAUN AVR1 ST	145	i	0	SDSES 4	294		694	COLETOG1	626			MGSES 14035	1.4
H Hollow GT 2	31			FALCONG2	0	CCEC GP1	128	BRAUN VHB1	0	MARBFAG1	0	SD4SES 5	573	RIONOG CT1	91					MGSES 6474	12.0
H Hollow GT 3	57	Valley Area		FALCONG3	0	CCEC GP2	118	BRAUN VHB2	0	MARBFAG2	0	_	867	RIONOG CT2	90	RAYBURN G1.2	0 12			MGSES AXFMR3H	14.9
H Hollow GT 4	26	DUKE GT1	150		0	CCEC ST1	80	BRAUN VHB3	0		0	Austin		RIONOG CT3		RAYBURNG7	0	1		MNSESB	26.7
Los Vientos 1	26	DUKE GT2		FERMI	25		326	BRAUN VHB6CT5	0	INKS G1	0	SANHSYD 5A	99	RIONOG ST1		RAYBURNG8	0	1		PBSES 6550	41.2
Los Vientos 3	7	DUKE ST1	167			NUECESG7	115	BRAUN VHB6CT6	0		_	SANHSYD 5C	57			RAYBURNG9	0	1		PBSES 6545 A	35.0
Los Vientos 4	6	Hidalgo	471	S.San Anton		NUECESG8	66	BRAUN VHB6CT7	0	 	1	SANHSYD1	0	HAYSENG1	0	RAYBURNG10	0	Dynamic	1	SCSES 1255 B	30.5
Los Vientos 5	4	maaigo		PEARS A	0	NUECESG9	68	BRAUN VHB6CT8	0	E.Austin	_	SANHSYD2	0	HAYSENG2	0	TO CLEDINIO TO	0	RT Proc		SCSES 1820 A	5.0
MIRASOLE MIR1	0.3	NEDIN G1	222	PEARS B	0	HOLOLOGS	249	DKAON_VIIDOC 10	384	BASTENG1	0	SANHSYD3	0	HAYSENG3	0	S/HOUSTON	+ "	Complete	-	WIRTZ	0.0
MIRASOLE_MIR1		NEDIN_G1	206	PEARS_B	0	B DAVISG1	0	LEON CT1	0	BASTENG1 BASTENG2	0	SANHSYD4	0	HAYSENG4	163		40	Complete	DSA	WIRTZ	0.0
MIRASOLE_MIR1		NEDIN_G2 NEDIN G3		PEARS D		B_DAVISG1 B_DAVISG2	118	LEON_CT1	0	BASTENG2 BASTENG3	0	SANHSYD6	0	TIA FORION	163		42	20.04	DOM		
MIKASULE_MIK2				PEAKS_D						DASTENGS				CANDUDA				00.00	DTOA	1	
	5.5	MVEC	663		0	B_DAVISG3	65	LEON_CT3	0		0	SANHSYD7	0	CANYHY	0	SCLPC_3	40	23:30	RTCA	4	
PAP1_J01	0		_		_	B_DAVISG4	65	LEON_CT4	0	LOSTPGT1	0		156			SCLPC_4	0				
Pena 1	10	SILAS_6	0	SANMIGL G1	366		248		0	LOSTPGT2	0	DECKER_G1	0	WEBBER SOLAR	26		122				
Pena 2	8	SILAS_9	0			VALEROG1	0	OCI_Alamo	32	LOSTPST1	0	DECKER_G2	0			DUPV1_G1	0				
Pena 3	5	SILAS_10	0			VALEROG2	0				0	DPGT_1	0			1					
	31		0	1			0	1			T T	DPGT 2	0	1				1		Nuke Voltages	
IREDEISH 1 & 2																					
REDFISH 1 & 2			Ť				_				†	DECT 2	^	TOTAL OFNEDATIO	ONL	25042		landad annum annum a		CDCEC	254.7
REDFISH 1 & 2 Sanroman I Santacruz 1	17		Ť									DPGT_3 DPGT_4	0	TOTAL GENERATION EMS total GEN	NC	35843 35690	cons	traint responsive p	ower	CPSES STP	354.7 357.5

Displays generation output in a geographic manner

Replacing In OpsTools Framework

Additional Data Available

Hover for more details

Double-click for past data

Color Scheme Can Be Changed: Pricing

Fuel: WIND Select Search Fields ... Status Fields:

Filter on various attributes (contained in the AF model)

Wind Resources in **ERCOT**

Visualizations: ERCOT Takeaways

- ProcessBook can take you a long way
- Transition to browser-based displays to stay current
 - IE 11 is slow
 - Chrome is not
- AF provides a centralized location for all display data
- Utilize your AF hierarchy to allow for different data "slices"

Using the PI System to monitor the ERCOT Interconnection

COMPANY and **GOAL**

ERCOT is using AF, ProcessBook, and the WebAPI to help Operators visualize and diagnose events on the electric grid

Data spread across different systems and technologies did not allow for a cohesive display approach

 Excel was constantly being used to "integrate" the different systems

SOLUTION

ERCOT integrated the different datasets using Asset Framework

- Market, Modeling, and EMS data located in a single system
- Used Table Queries, RDBMS-Int, and PI OLEDB to gather the data

RESULTS

ERCOT can replace old displays and tools with Asset Framework-driven displays

- Excel tools are being replaced and retired from the Control Room
- Higher quality displays have never been easier to create

Contact Information

Joel Koepke

Joel.Koepke@ercot.com

Supervisor, Grid Applications

Development

Electric Reliability Council of Texas

Questions

Please wait for the microphone before asking your questions

State your name & company

Please don't forget to...

complete the Post Event Survey