
Turbine Efficiency Pump Performance

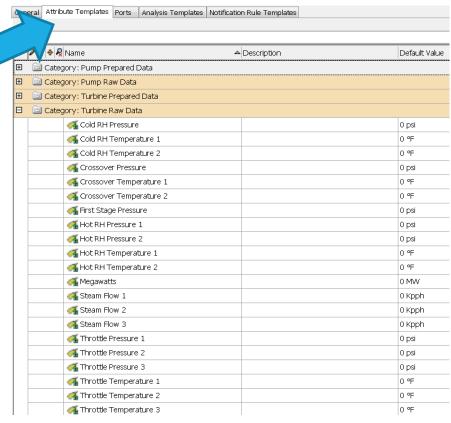
Using AF

CPS Energy

Business Decision

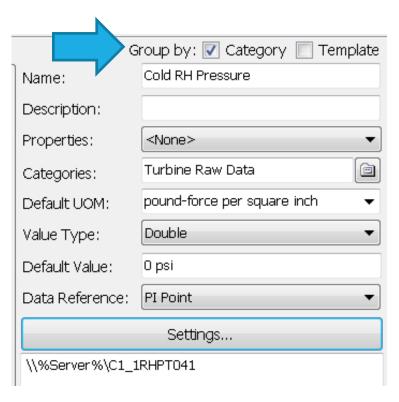
- Enterprise Asset Customer "Downtown decision"
- Comes with "All You Can Eat Buffet"
- Now, what do we do?
- Test Crew needs help!

HP & IP Turbine Efficiency

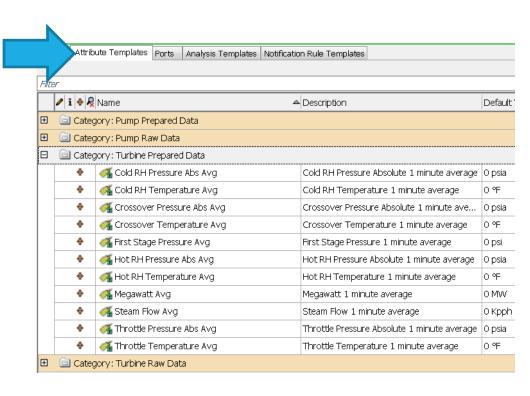

- AF Jump Start Workshop
- Developed HP Turbine Efficiency tool
 - One set of data inputs
 - But, some units had 2, 3 or 4
- Take two Developed Data Preparation Modules
 - Average points, unit conversions, time averaging, validation
 - Each unit has separate data preparation module
 - Outputs to standardized attributes & Pl Tags
 Braunig1.Throttle Pressure Abs Avg
 Braunig2.Throttle Pressure Abs Avg
- One HP-IP turbine template; multiple elements

Turbine Calculations (Engineer Talk)

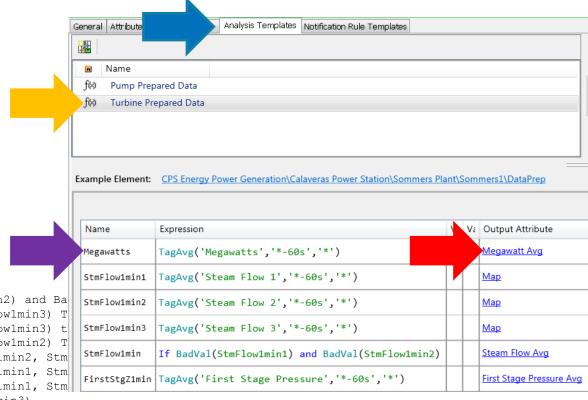
- Turbine efficiency is a function of inlet condition (Temp, Press) and outlet conditions (Temp, Press)
- Efficiency = (Input Enthalpy Output Enthalpy)/ (Input Enthalpy "Ideal" Output Enthalpy)
- AF has Steam Property calculations built in (enthalpy, entropy, etc.)
- So... next step is to build ONE HP and IP turbine template


Data Preparation: Turbine Raw Data

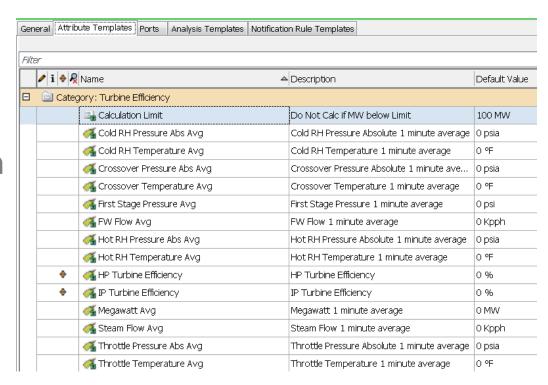
- Some points are single (e.g.)
 Cold RH Pressure)
- Some have two (e.g. Hot RH Pressure)
- Some have 3 (e.g. Steam Flow)
- As many as 4 (not shown)
- No two units are the same!


Data Preparation: Turbine Raw Data (Details)

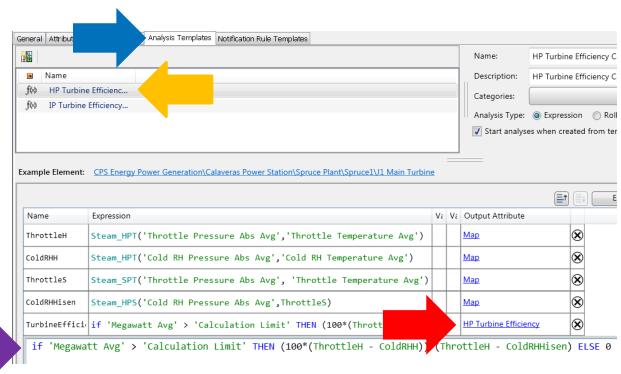
- Group by Category (more on that later)
- Name follow a naming convention
- Description not necessary
- Properties skip
- Categories more on this later
- Default Unit of Measure (UOM)
- Value Type: Double is "standard"
- Default Value: skip
- Data Reference: Pl Point
- Settings: This maps PI Point to AF


Data Preparation: Turbine Prepared Data

- Follow a naming convention!
- For turbines, absolute pressure is important
- HP Turbine requires 4 inputs and an "X-axis"
- IP Turbine requires 4 inputs and an "X-axis"
- All of these require calculations...
- Where do the calculations happen?


Data Preparation: Customized Calculations

- Analysis Templates
- Note organization
- Scope of variables
- Output Attributes
- Equations
- Data validation


Steam Turbine Template: Turbine Raw & Prepared Data

- Output from Data Prep...
- Are inputs for Steam Turbine Template!
- Calculation Limit
- Categories

Steam Turbine Template: Calculations

- Analysis Templates
- Organization
- Scope of variables
- Output Attribute to PI Tags
- Steam Property Calcs
- Calculation Limit

HP/IP Turbine At-A-Glance

- Data Preparation Steps
 - What input data is required? goal setting
 - Locate point(s) for each input find the PI points
 - Create AF points, mapped to PI points
 - Do numerical averaging (60 second averages)
 - Do other intermediate calcs (e.g. convert psig to psia)
 - Do averaging for multiple points, with data validation
- Create HP/IP Turbine Template
- Create HP\IP Turbine Element (specific unit & data prep element)

Visualization

Next Project: Pump Performance

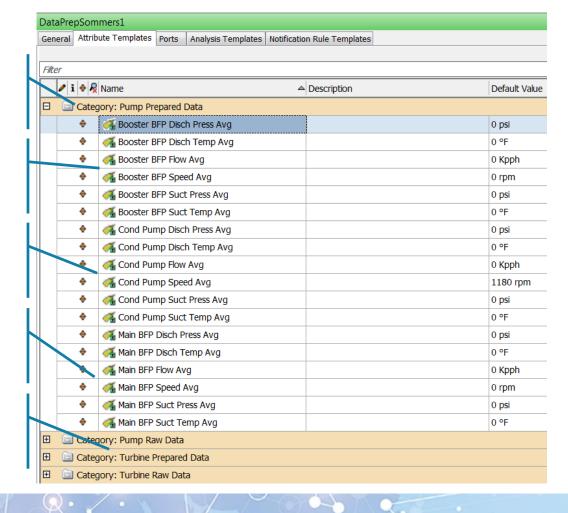
- All centrifugal pumps have similar characteristic curves
- Pump affinity equations will work for most pumps
- Required data
 - Inlet temperature & pressure
 - Outlet temperature & pressure
 - Pump flow
 - Pump speed (rpm) may be constant
 - Design pump speed

Pump Performance - Nuances

- Boiler Feed Pumps sort of easy
- Condensate Pumps suction pressure in inHg_{abs}
- Boiler Feed Booster Pumps ratioed speed
- Some points are single, some have 2, some have 3 (need to average and use data verification)

Asset Framework Nuances

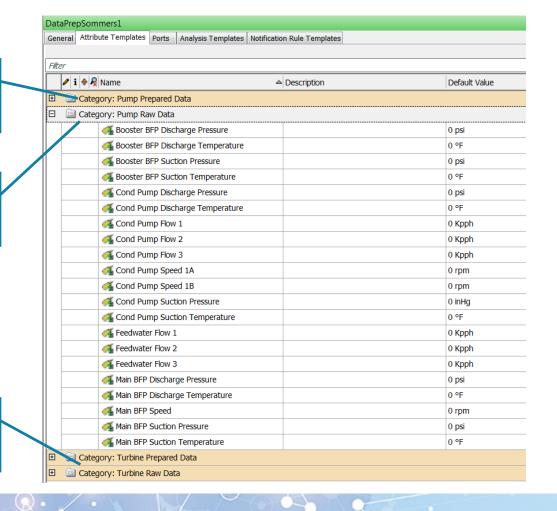
- When list of points gets longer, organization is more important
- Rule of thumb: keep it all visible on one page
- Categories very useful!


Pump Prepared Data

6 points for Booster BFP

6 points for Cond Pumps

6 points for Main BFP


Other Categories

Prepared Data (collapsed)

Pump Raw Data

Turbine Categories

Analysis Templates

Name	Expression	V٤	V٤	Output Attribute	
Megawatts	TagAvg('Megawatts','*-60s','*')			Megawatt Avg	8
StmFlow1min1	TagAvg('Steam Flow 1','*-60s','*')			Мар	8
StmFlow1min2	TagAvg('Steam Flow 2','*-60s','*')			Мар	8
StmFlow1min3	TagAvg('Steam Flow 3','*-60s','*')			Мар	8
StmFlow1min	If BadVal(StmFlow1min1) and BadVal(StmFlow1min2) and BadVal(StmFlo			Steam Flow Avg	8
FirstStgZ1min	TagAvg('First Stage Pressure','*-60s','*')			First Stage Pressure Avg	8
ThrStmZ1min1	TagAvg('Throttle Pressure 1','*-60s','*')+14.696			Мар	8
ThrStmZ1min2	TagAvg('Throttle Pressure 2','*-60s','*')+14.696			Мар	8
ThrStmZ1min3	TagAvg('Throttle Pressure 3','*-60s','*')+14.696			Мар	8
ThrStmZ1min	If BadVal(ThrStmZ1min1) and BadVal(ThrStmZ1min2) and BadVal(ThrStm			Throttle Pressure Abs Avg	8
ThrStmQ1min1	TagAvg('Throttle Temperature 1','*-60s','*')			Мар	8

Analysis Templates

- Calculations cannot be grouped by category
- But, more than one Asset Template may be used
- So I put these in a "logical sequence"
- "X-axis" first stage pressure/ megawatts/ steam flow
- HP turbine inlet steam
- HP turbine outlet steam
- IP turbine inlet steam
- IP turbine outlet steam
- Double (triple) readings come first, then averages

Summing Up...

- Goal Setting (HP/IP Turbine Efficiency)
- Start Somewhere (Jump Start)
- Goal Refinement
- Go slow to go fast
 - Data Preparation for Turbines
 - Template for Turbines
 - Data Preparation for Pumps
 - Template for Pumps
 - Categorize/ Organize along the way
 - Leave Space for future work

The Ultimate Win

- Test Crew Past once 5 (+5)
- Test Crew Present one guy
- Test Crew Future AF

Contact Information

J. Michael Harris

jmharris@cpsenergy.com

Generation Performance Mgr

CPS Energy

Questions

Please wait for the microphone before asking your questions

State your name & company

Please don't forget to...

complete the Post Event Survey

감사합니다

谢谢

Merci

Danke Gracias

Thank You

ありがとう

Спасибо

Obrigado