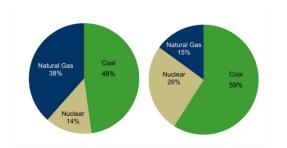


Thermal Performance Analysis using PI Asset Framework

Chris Jackson Principal Engineer



- Largest Generator in Texas 17,814 MW
- 2018 180 MW Solar Plant
- 2018 Retire 1,800 MW Coal Plant
- 2017 1,054 MW Combined Cycle Plant
- 2016 1,912 MW Combined Cycle Plant
- 2016 1,076 MW Combined Cycle Plant

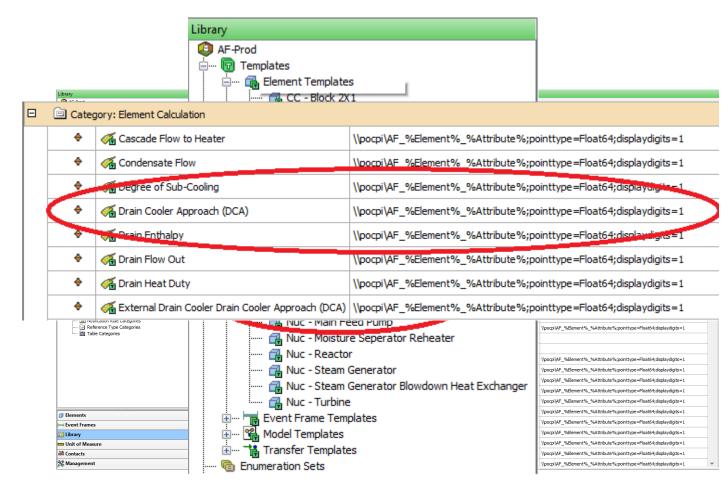
2016 Generation Portfolio

Most of the energy Luminant generates is produced by its reliable, low-cost nuclear and coal plants

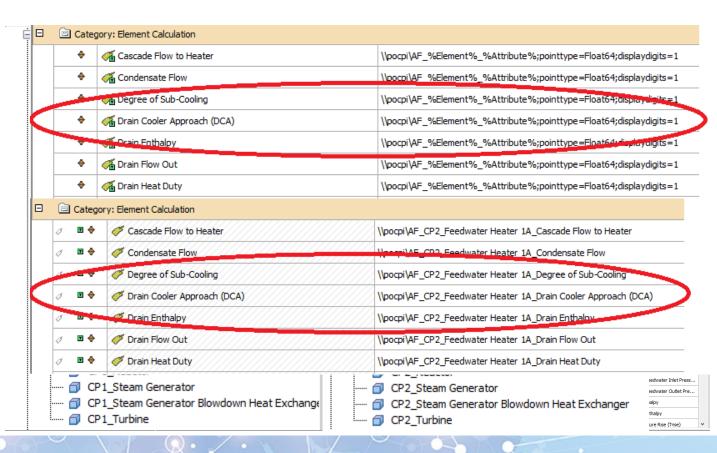
2016 Generating Capacity Total: 16.760 MW 2016 Energy Production¹ Total: 77,574 GWh

Graphs illustrate 2016 only.

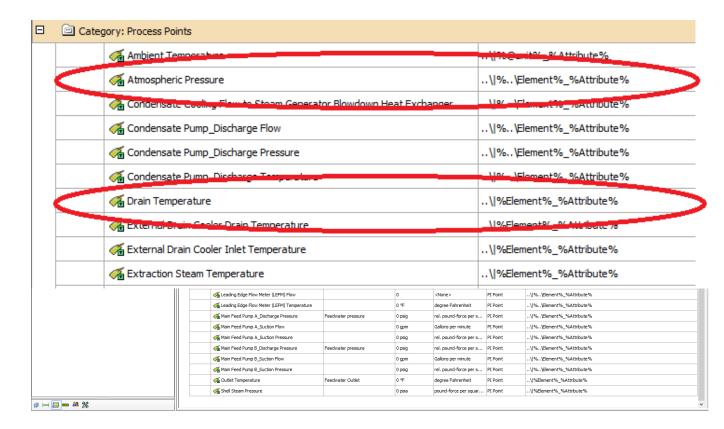
Generation Summary

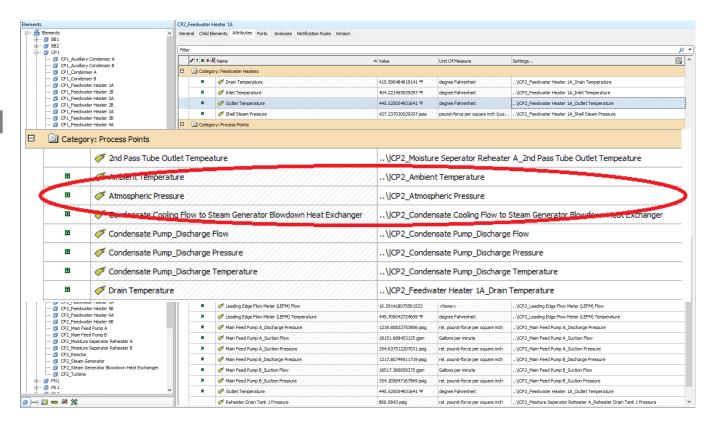

	•		
FUEL TYPE	CAPACITY (MW)	NUMBER OF PLANTS	NUMBER OF UNITS
Nuclear	2,300	1	2
Coal	8,017	5	12
Natural gas	7,497*	10*	42*
- Thermal	2,480	4	7
- Simple-Cycle	975	3	15
- Combined-Cycle	4,042	3	20
TOTAL	117,814	16	56

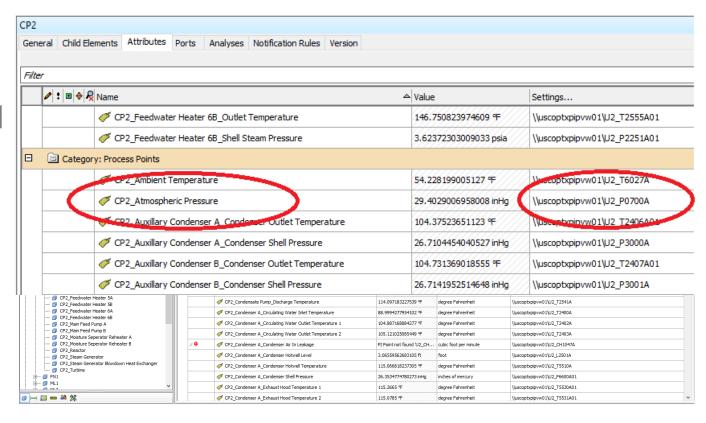
^{*}Includes all thermal, simple-cycle and combined-cycle units.


Business Challenge

- Onboarding new generation assets
- Competitive electric market
- Distributed applications
 - 3 different thermal performance tools
 - 13 different applications
 - Each requires maintenance and expertise
- Challenged to consolidate thermal performance analysis
- Solution must be scalable and easy to maintain

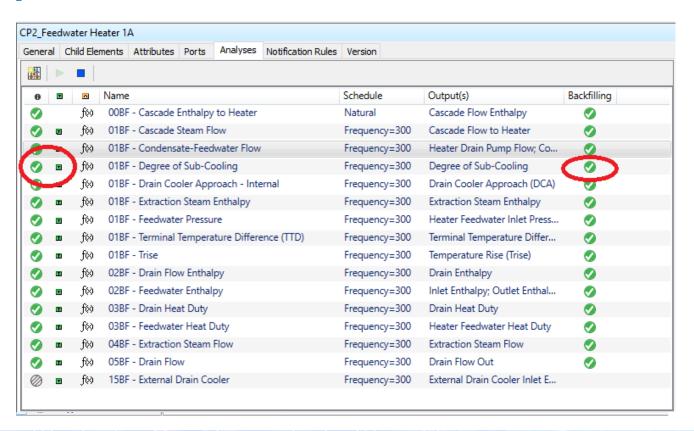

- Allow for scale
- Substitution Parameters are key


- 24 elements from 1 Template
- Substitution
 Parameters
 create PI
 Tags


Substitution
 Parameters
 create
 attribute
 references

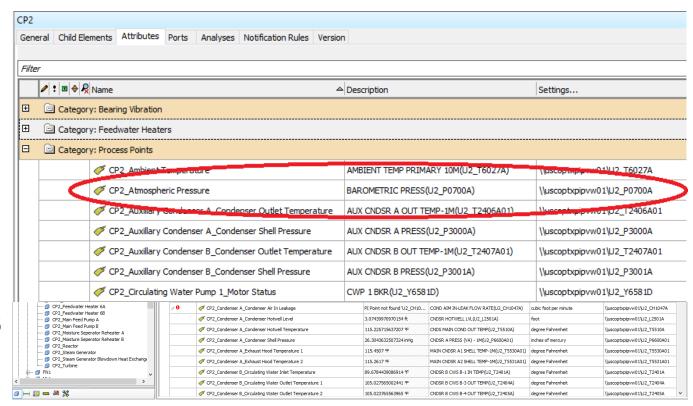
Attributes
 references
 are managed
 at the asset
 level

PI tag
 references
 are managed
 at the unit
 level

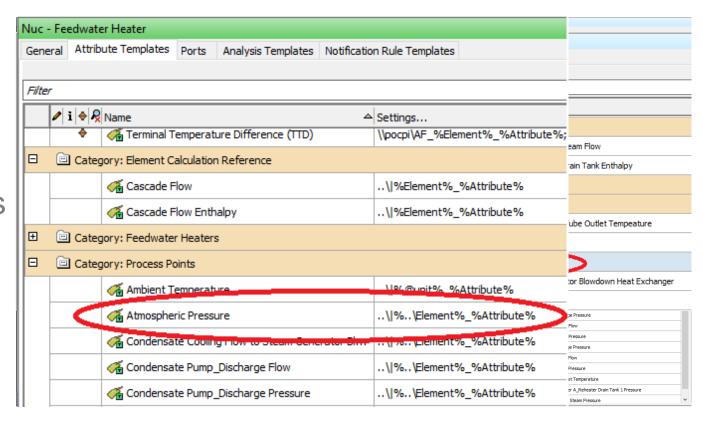

Analysis Templates

- Allow for scale
- Backfill Sequence established
- Calculations are converted from Excel worksheets

rary	Nuc - Feedwater Heater			
	ent: <u>CP2\CP2 Feedwater Heater 1A</u>			
Name	Expression	Value at Evaluatio	Value at Last Trigg	Output Attribute
C30	'Leading Edge Flow Meter (LEFM) Flow'*1000	16277	16277	<u>Мар</u>
C21	convert('Heater Drain Pump_Discharge Temperature',"°C")	181.07 °C	181.07 °C	Мар
C18	Convert(Convert(avg('Main Feed Pump A_Suction Pressure','Main Feed Pump B_	2549.3 kPa	2549.3 kPa	Мар
C31	Steam_VPTL(C18,C21)	1.1275 cm3/g	1.1275 cm3/g	<u>Map</u>
C31Eng	c31*0.0160185	0.018062	0.018062	<u>Map</u>
C20	'Heater Drain Pump_Discharge Flow'	13697 gpm	13577 gpm	Map
C32	//HD Pump Disch Flow - klb/hr C20*0.13368*1/C31Eng*60/1000	6082.7	6029.2	Heater Drain Pump Flow
C33	//Condensate Flow (per LEFM Flow) - klb/hr C30-C32	10194	10248	Condensate Flow

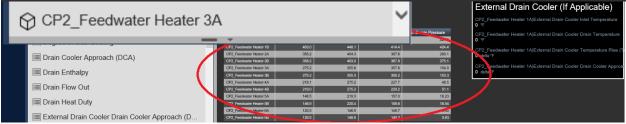

Analysis Templates

- Analysis is running
- Backfill
 Complete

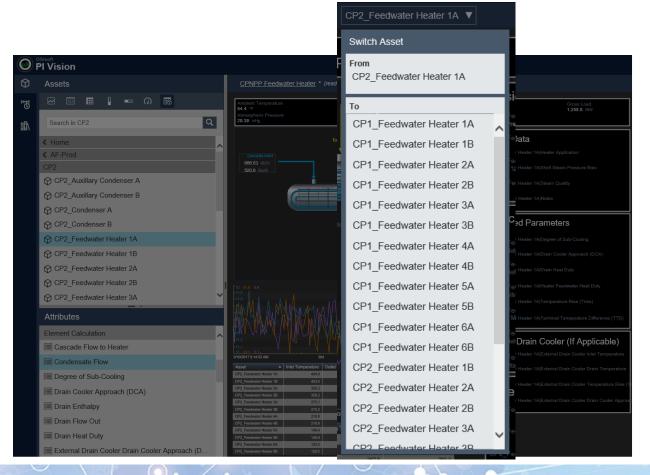

Flat Hierarchy – Unit Level

- EasyMaintenance
- Description references
 DCS or PI
 Server
- Naming Convention is important

Flat Hierarchy – Asset Level


- Attributes reference to main level
- Naming
 Convention is important

PI Vision


- Element Relative Display
- One display multiple assets
- AssetComparisonTable

Asset ▲	Inlet Temperature	Outlet Temperature	Drain Temperature	Shell Steam Pressure	
CP2_Feedwater Heater 1A	404.0	445.5	415.8	427.2	
CP2_Feedwater Heater 1B	403.0	446.1	414.3	424.6	
CP2_Feedwater Heater 2A	358.2	404.0	367.5	280.0	
CP2_Feedwater Heater 2B	358.2	403.0	367.7	275.0	
CP2_Feedwater Heater 3A	275.1	355.7	357.6	154.9	
CP2_Feedwater Heater 3B	275.1	355.4	356.1	153.3	
CP2_Feedwater Heater 4A	218.1	275.1	227.8	48.5	
CP2_Feedwater Heater 4B	218.9	275.1	229.3	51.1	
CP2_Feedwater Heater 5A	146.4	219.2	156.9	18.23	
CP2_Feedwater Heater 5B	146.8	220.3	158.8	18.53	
CP2_Feedwater Heater 6A	120.5	146.4	148.7	3.65	
CP2_Feedwater Heater 6B	120.5	146.8	149.2	3.63	
External Drain Cooler (If Applicable)					

PI Vision

Switch between assets

Lessons Learned

- AF Kickstart session is very helpful
- Templates allow for scale
- Substitution parameters are key
- Hierarchy is important for maintenance
- Naming convention is important for Vision
- Backfill sequence needs to be noted
- Asset interdependence needs to be known

Thermal Performance using PI Asset Framework

COMPANY and **GOAL**

Luminant wanted to leverage PI Asset Framework to perform thermal performance analysis of its generation fleet

Thermal performance had traditionally been performed with a 3rd party application.

- Cost to implement 3rd party applications have historically been \$100K+ per unit
- Luminant resources were required to implement and maintain 3rd party applications

SOLUTION

Build out thermal calculations in PI asset framework

- Substitution parameters were utilized to scale the application
- Flat Hierarchy was utilized to simplify maintenance

RESULTS

Thermal performance calculations for Luminant's generation fleet can now be performed utilizing PI AF.

- PI AF was used on Luminant's most recent combined cycle unit saving \$160K.
- Standardization across the fleet allows for 1 system vs. 13 separate 3rd party applications.

Contact Information

Chris Jackson

Chris.Jackson@Luminant.com

Principal Engineer

Luminant Energy

Questions

Please wait for the microphone before asking your questions

State your name & company

Please don't forget to...

complete the Post Event Survey

감사합니다

谢谢

Merci

Gracias

Thank You

Danke

ありがとう

Спасибо

Obrigado