Enabling Delek's Digital Transformation with the Enterprise Agreement (EA)

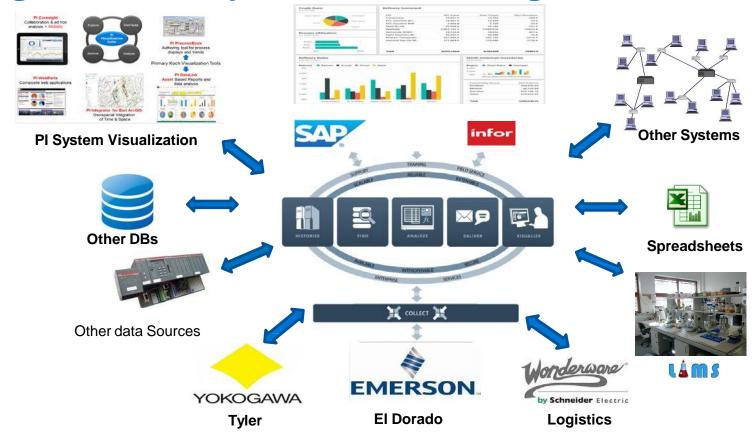
Presented by: **Bob Gonzales Director, Training & Operational Excellence**

Telling Our Story...

- Delek US at a Glance
- Our Journey to an Enterprise Agreement (EA)
- Delek US PI System Highlight Reel
- Best Practices & Lessons Learned
- Continuing our Digital Transformation Journey
- Summary

Delek US HQ – Brentwood, TN.

Delek US Holdings:


- 2 Refineries @155K BPD
 - El Dorado, AK; Tyler, TX.
- Logistics (Crude/Product)

Acquired Alon USA 7/1/2017

- 2 Refineries @ 147K BPD
 - Big Spring,TX; Krotz Springs, LA.
- 14 Asphalt Terminals

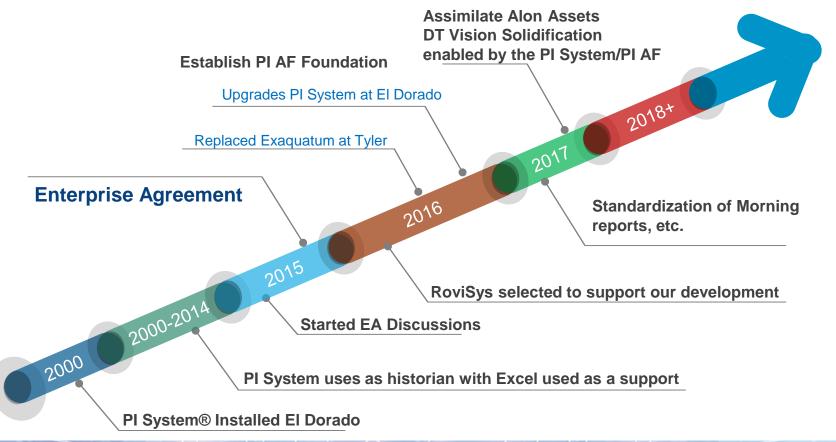
Delek US Holdings at a Glance...

High-level PI System Positioning

Our main focus was the digital transformation.

What does that mean?

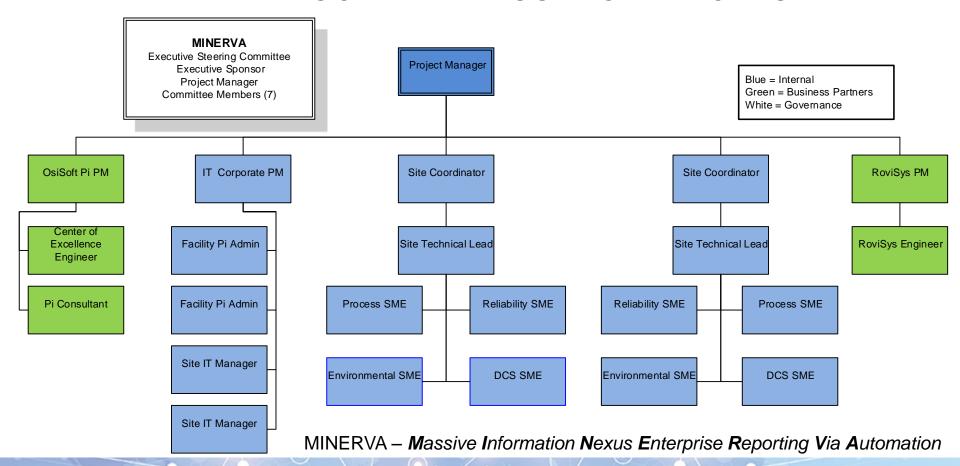
According to Wikipedia: **Digital transformation** is the change associated with the application of digital technology in all aspects of human society.


Digital transformation may be thought of as embracing digital technologies: $digital\ competence
ightarrow digital\ usage
ightarrow digital\ transformation$

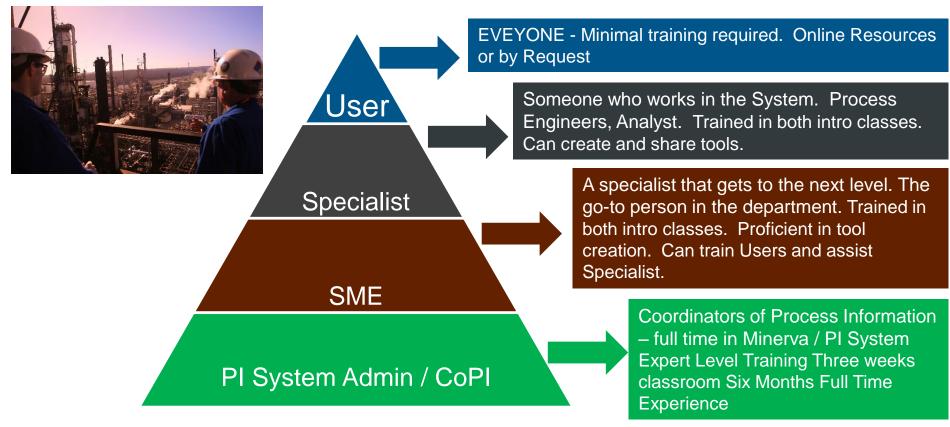
Our Journey to an Enterprise Agreement (EA)

Our Journey to an Enterprise Agreement & Beyond

Why the Enterprise Agreement (EA)?


We needed a structured approach . . .

Annual Review **WORK PROCESSES Development Support Business Impact BIW BIW** Workshops **Execute Roadmap** Enterprise Roadmap Planning Kickoff Meetings

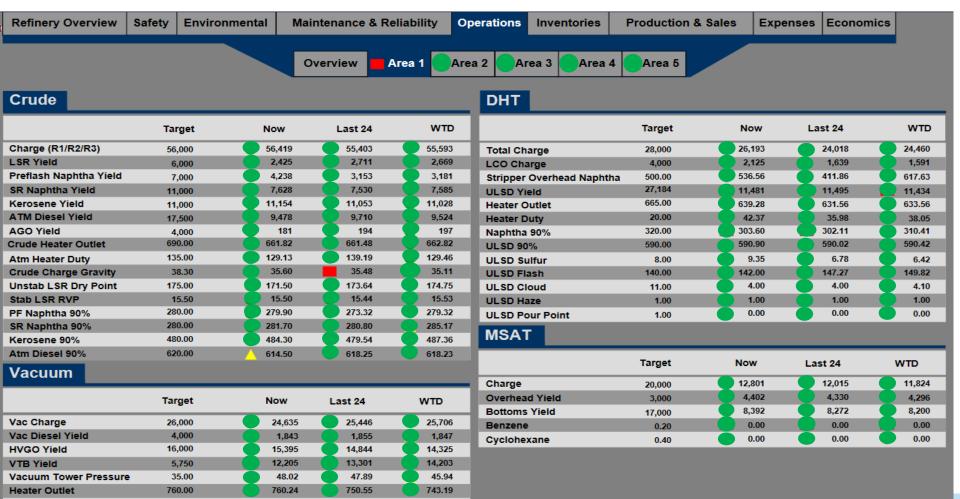

TIME

MINERVA COMMITTEE SUPPORT "ROLES"

Minerva Utilization – Training Levels

Challenges we had to Overcome

Prior Processes vs. Future Processes



Scope Creep – what we didn't know using the PI System

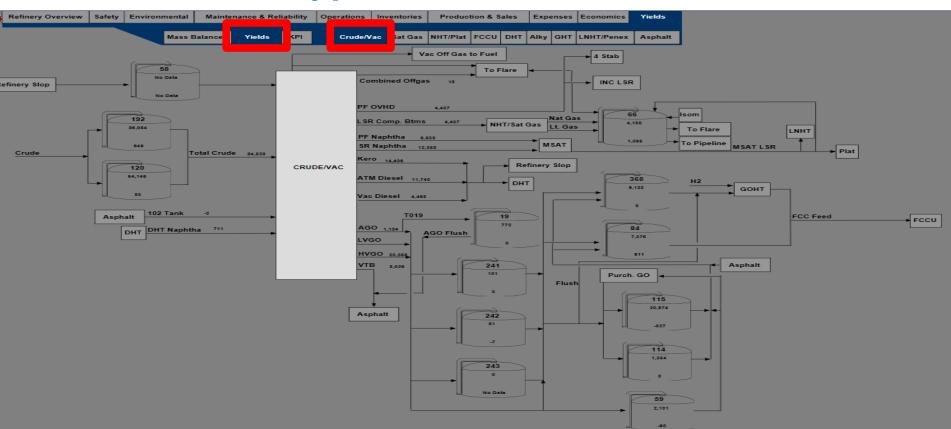
- Communication who was responsible / assumptions
- Understanding of strategy and getting individuals and team alignment
- Ownership of future processes

DELEK Highlight Reel

Typical Mass Balance Screen

Refinery Overview Safety Environmental Maintenance & Reliability Operations Inventories **Production & Sales** Expenses Economics **Yields** Sat Gas NHT/Plat | FCCU | DHT | Alky GHT LNHT/Penex **Mass Balance** Yields KPI Crude/Vac **Asphalt**

Inputs


	Actual Data									Normalized D		Normalized MTD Data				
	Flow	API Gravity	Mol Wt	Temp	Pressure	Mass (lb/hr)	wt%	Liq Vol%	Flow	Mass (lb/hr)	wt%	Liq Vol%	Flow	Mass (lb/hr)	wt%	Liq Vol%
Crude Oil (Minus BS&W)	76,938	42.37		84.00	-	913,414	98.68%	98.52%	76,938	913,414	98.63%	98.52%	76,787	909,364	98.26%	98.08%
DHT Excess LPG	652	64.80		84.44	-	6,858	0.74%	0.84%	652	6,858	0.74%	0.84%	792	8,267	0.89%	1.01%
Naphtha from Tk 163	503	63.36	-	84.00		5,327	0.58%	0.64%	503	5,327	0.58%	0.64%	712	7,876	0.85%	0.91%
Topped Crude from Storage	-	-	-		-		-	-		-		-		-	-	
Total Inputs	78,093					925,599	100.00%	100.00%	78,093	925,599	99.95%	100.00%	78,292	925,506	100.00%	100.00%

Outputs

	Actual Data									Normalized D	aily Data		Normalized MTD Data			
	Flow	API Gravity	Mol Wt	Temp	Pressure	Mass (lb/hr)	wt%	Liq Vol%	Flow	Mass (lb/hr)	wt%	Liq Vol%	Flow	Mass (lb/hr)	wt%	Liq Vol%
Atmos Tower Offgas	184		35.02	111.94	167.2	714	0.08%	-	58	721	0.08%		60	746	0.08%	
Vacuum Tower Offgas	163		39.25	91.00	1.5	703	0.08%		59	710	0.08%		86	1,035	0.11%	-
Preflash Naphtha to Sat Gas	15,398	66.84	-	117.79		160,240	17.31%	19.72%	15,576	161,790	17.48%	49.76%	15,612	162,360	17.54%	19.94%
Atmos Naphtha to Sat Gas	9,486	58.25	-	111.42		103,188	11.15%	12.15%	9,596	104,187	11.26%	12.95%	9,596	114,735	12.40%	13.54%
Preflash Naphtha to V-3	0	66.84	-	117.79		0	0.00%	0.00%	0	0	0.00%	0.00%	0	0	0.00%	0.00%
Naphtha to Tk 163	4,849	63.26	-	84.00		51,392	5.55%	6.21%	4,905	51,889	5.61%	5.11%	4,905	36,102	3.90%	4.36%
Kerosene	7,620	46.10		170.97		88,561	9.57%	9.76%	7,708	89,418	9.66%	10.09%	7,708	92,156	9.96%	10.15%
SR Diesel	15,600	37.60	-	287.26		190,426	20.57%	19.98%	15,781	192,269	20.77%	20.20%	15,600	190,062	20.54%	19.93%
AGO to FCC	1,414	31.37	-	633.76		17,921	1.94%	1.81%	1,430	18,094	1.95%	2.48%	1,430	26,482	2.86%	2.47%
Topped Crude to Storage	0	41.19		112.86		0.00	0.00%	0.00%	0	0.00	0.00%	0.00%	0	0.00	0.00%	0.00%
Vacuum Diesel	2,353	33.60	-	336.14		29,416	3.18%	3.01%	2,380	29,701	3.21%	3.12%	2,417	30,219	3.27%	3.09%
IVGO to FCC	0	32.49		440.31	-	0	0.00%	0.00%	0	0	0.00%	0.00%	0	0	0.00%	0.00%
HVGO to FCC	14,040	25.43		562.92		184,668	19.95%	17.98%	14,202	186,455	20.14%	18.09%	13,936	184,173	19.90%	17.80%
VTB	6,305	13.91		675.64	-	89,499	9.67%	8.07%	6,378	90,365	9.76%	7.89%	6,099	86,159	9.31%	7.79%
Total Outputs	77,413					916,730	99.04%	98.68%	78,074	925,599	100.00%	129.69%	77,557	922,447	99.86%	99.06%

Typical Yields Screen

Typical Key Process Information Screen

ery Overview Safety	Environmenta	I Mainte	nance & Re	liability	Ор	erations Inv	entories	Produc	tion & S	ales	Expe	enses E	conomics	Yields
	Mass	Balance	Yields	КРІ		Crude/Vac	Sat Gas	NHT/Plat	FCCU	DHT	Alky	GHT L	NHT/Penex	Aspha
Key Process I	nformation					Crude	Tower							
	N	low W	TD M	TD	YTD				Now	,	WTD	МТ	D YTD	
Raw Crude BS&W, vol	%	0.30).33 0	.31	0.29	Crude Tow	er Top Ter	np, °F	299		287	2	91 304	
Raw Crude Salt, ptb		55	62	57	64	Reflux Dru	m Temp, °I	F	298		286	2	90 302	
Wash Water Rate, vol%	6	157	157	157	156	Kero Draw	Tray Temp	o, °F	485		490	4	79 478	
Desalted Crude Salt, p	tb	0.4	0.8	0.9	0.7	Diesel P/A	Return Tei	mp, °F	409		408	4	2 400	
Desalter Efficiency, %	98	.4% 98	.7% 98.	4% 9	98.9%	Diesel Drav	w Tray Ten	np, °F	561		559	5	51 557	
Desalter Temp, °F		277	276	275	282	AGO P/U T			422		421	4	21 423	
Desalter Pressure		193	197	207	198	AGO Draw	Tray Temp	o, °F	607		606	6	00 606	
Crude Tower Pressure		26.9	27.0 2	7.1	24.0	AGO Reflu	x Temp, °F							
Vacuum Pressure, mm	Hg	52.9	15.1 5	9.6	58.0	Above Flas	sh Zone Te	mp, °F	635		634	6:	28 634	
Steam Flow to Ejectors	s, lb/hr					Flash Zone	Temp, °F							
Steam Press to Ejecto	rs, psig	140	140	140	140	Heater Out	let Temp, °	°F	643		644	6	88 650	
N PF Heater Efficiency	, %	81.2	0.9 8	1.1	81.1	ATB Temp	, °F		614		613	6	12 625	
S PF Heater Eff, %	:	82.6	2.6 8	2.2	82.6	Reflux Rat	e, BPD		26	2	5,598	25,5	55 22,918	
Crude Heater Inlet Ten	ıp, °F	643	644 (38	650	Diesel P/A	Rate, BPD		15	1	5,233	15,3	14,714	
Atmos Twr Heater Eff,	%	81.4	31.8 8	1.1	80.8	AGO P/U R	ate, BPD		15	1	5,706	16,5	54 15,442	
Vac Heater Inlet Temp	°F					AGO P/D R	ate, BPD		871		872	8	70 925	
Vac Twr Heater Eff, %		76.8	6.6 7	3.3	75.0	AGO Rate	to FCC		1,042		1,104	1,0	99 812	
MSAT Heater Inlet Ten	ıp, °F					Stripping 9	Steam, MLE	ЗН	8.87		8.03	6.	11 5.25	
MSAT Twr Heater Eff,	%					Valve % O	pen		23.0		20.5	15	.8 13.7	
						Naptha 95:	Kero 5		47		50		50 51	
						Kero 95:Di	esel 5		-95		-102	4	34 -85	
Vacuum Towe	r					Diesel 95:	AGO 5		-179		-181	-1	58 -177	
	N	ow W	TD M	TD	YTD				Now	,	WTD	МТ	D YTD	
Vac Tower Top Temp,	°F	261	250 2	72	244	LVGO Prod	duct Flow,	BPD						
Diesel Draw Tray Temp), °F	292	289 2	98	296	LVGO P/D	Flow, BPD							
Diesel P/U Return Tem				17	201	AGO Char	ge Vac Twi	LBH	14,582	1	4,594	14,4	92 10,750	
LVGO Draw Tray Temp	, °F			504	501	HVGO P/D	Flow Was	h Oil, BPD	4		5,042	4,4	52 5,278	
HVGO Draw Tray Temp			672	80	665	HVGO P/A	Flow, BPD)	33	3	3,002	31,9	90 31,177	
Heater Outlet Temp, °F				52	755	HVGO Pro					0,324	20,2		
VTB Temp, °F		695	657 (65	668	Stripping 9		ЗН						
Diesel to Storage Flow					4,150	Valve % O								
Diesel P/D Flow, BPD			004 7,5		7,271	Vac Diesel		5	-12		-16	-	19 -9	
			998 31,9			HVGO 95:\			-75		-75		75 -98	

Tank Inventory Management System

HOME TANK INVENTORIES REAL-TIME INVENTORI... **TRANSFERS GASOLINE BLENDS** SHIPMENTS/RECEIPTS (T) 09/12/2017 Filter By Tank Filter By Departm.. -Filter By Material Tank Number > Material Level FT ~ Level IN BS&W FT Y BS&W IN API Temp Volume~ 109 #4DIE/KERO/#7LCO TO #8 0.000 0 0.000 38.2 60.0 140/160 PEN ASPHALT 8.2 112 5 9.000 0 0.000 290.0 16,393 113 NO. 14 GC CRKED GASO 5 3.000 0 0.000 57.2 65.0 7,268 NO. 4 VACUUM GAS OIL 114 0 9.000 0 0.000 30.6 60.0 1,354 115 NO. 4 VACUUM GAS OIL 11 7.750 0 0.000 24.3 95.0 20,974 119 RACK DIESEL - ULTRA LO S... 33 8.250 0 0.000 39.0 70.0 22,941 120 NON HYDROCARBONS 27 1.000 0 0.000 24.1 80.0 54,145 121 DIESEL - ULTRA LO SULFUR 7.500 0.000 39.1 68.0 23,090 0 122 DIESEL - ULTRA LO SULFUR 10.750 0 0.000 38.7 70.0 39,766 123 84 OCTANE SUB-GRADE GA... 32 2.500 95.0 52,165 0 0.000 60.9 124 93 OCTANE SUPER PREMI... 2.000 0 0.000 58.8 80.0 46,536 125 RACK 84 OCTANE SUB-GRA... 29 5.250 2.500 60.7 89.0 39,444 0

0

0

0.500

0.000

55.9

61.3

74.0

92.0

1.000

3.000

126

128

RACK 93 OCTANE SUPER P... 8

84 OCTANE SUB-GRADE GA... 8

10.446

12,630

Effect of PI Notifications

GOAL

Develop an improvement process to **stay compliant** with regulatory compliance

Improve proactive communications on any deviations

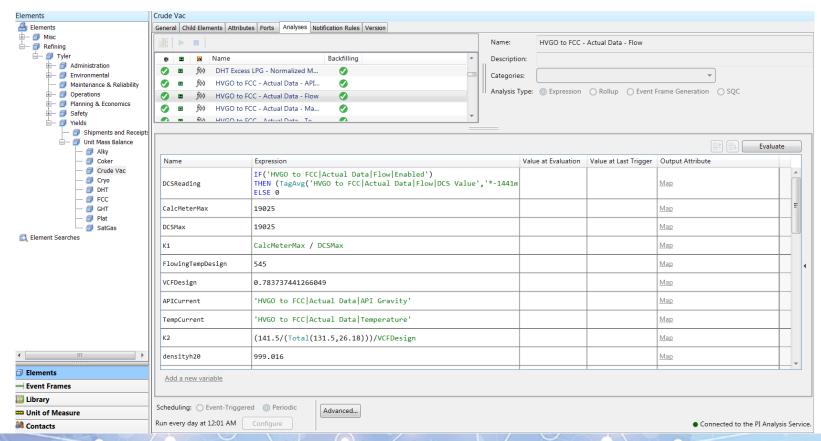
We need to:

- Early notifications on any possible emissions
- Early notifications on tank levels (min/max)

SOLUTION

Developed method to gather tank data

- UFL Interface
- Notifications


RESULTS

EHS&R is able to respond quickly to field issues and resolve them much quicker

- Staying compliant with regulators
- Reducing our emissions in the process

PI Asset Framework & PI Analytics

Summary of PI System Install & Configured Solutions

Interfaces

Interface Instance Count: 93

Interface Types:

- IntFix
- OPC DA
- OPD HDA
- PI-to-PI
- PIPerfMon
- **PIPESchd**
- RampSoak
- Random
- **RDBMS**
- UFL

Tag Counts

El Dorado: 41,737

Tyler: 29,289

Analyses Counts

El Dorado: 4,893

Tyler: 3,547

Notifications:

El Dorado: 14

Tyler: 87

Screen Counts

El Dorado: 68

Tyler: 55

Transfers

El Dorado: 6,000

Tyler: 700

Solutions Deployed

- **Daily Operating** Dashboards
- Executive Dashboard
- Unit Mass Balances
- Unit Yields
- Heater Efficiencies
- Tank Inventories & Transfers
- MAINTelligence
 - New Rounds Handhelds
- PI Manual Logger
 - Electronic Data Entry
- Ad Hoc Visualizations

20

Best Practices & Lessons Learned

My Perspective for Consideration

Best Practices:

- MINERVA Committee / Executive Committee meetings
- Roles versus job- interested resources to support continuous improvement
- Implemented an online change request form for minor / major changes changes
- Implemented "Sandbox" and "Production" database MOC-type process to test / validate in "Sandbox" before moving to "Production"
- Each PI System administration supports each others refinery
- Production database replaces Sandbox once a quarter

My Perspective for Consideration

Lessons Learned:

- Identify "Scope Creep" and dealt with it
- A lot of assumptions were being made
- "My" process vs. "Our" process getting everyone on board
- Digital transformation is an growing process that needs to be embraced

Continuing our Digital Transformation Journey

Digital Transformation – Journey Continues . . .

- Expand MINERVA to other Business Units
- Integration of MINERVA within the business units within the Company
- Continue work progress with Enterprise Agreement to further expand on what possibilities are available
- Continue to "educate & empower" our resources on the capabilities of the PI System
- Continuous improvement with audits and "Yearly Reviews"

Summary

Enabling Our Digital Transformation(DT) with the EA

GOAL

Become a 1st Quartile Performer in key Solomon indices and EBITDA though a digitally enhanced operational excellence program – a Digital Transformation.

CHALLENGE

Diverse culture and operational data systems inhibiting desired business performance risking long term sustainability

- Multiple historians and "Excel hell"
- Inefficient work processes, sharing of best practices and knowledge
- No local and enterprise wide, proactive, exception based data based decisions

SOLUTION

Entered into a strategic, value focused partnership with the EA and started our DT journey with

- Focus on historian and excel normalization via PI AF Templates
- ➤ Initially focused on KPIs, dashboards, and reports normalization of data
- Started analytics with PI AF Templates
- Leveraged PI Coresight/Vision for self serve BI and mobility

RESULTS

Standardization of key dashboards, KPIs, & reports; foundation for the next chapter in DT journey

- Defined the Delek "language" with PI AF
- Brought culture together and capturing knowledge, best practices, and standards in PI AF via analysis rules and process
- Established a foundation for improved definition of our DT vision and "chapters"
- Ability to abstract new Alon refineries into our "OT chart of accounts" using PI AF

Contact Information

Bob Gonzales

Bob.Gonzales@delekus.com

Director, Training & Operational Excellence

Delek US

Questions

Please wait for the microphone before asking your questions

Please state your name & company

Please don't forget to...

complete the Post Event Survey

Continuing our Digital Transformation Journey