

OUTLINE

- SNOLAB Overview
- The Science
- •PI @ SNOLAB

- SNOLAB is a deep underground science research laboratory
- Located 2km underground in Vale's Creighton Mine near Sudbury, Ontario
- Operated as a Class 2000 clean lab
- Focus is to conduct physics experiments exploring the fundamental make up of the universe.
- Carried out by constructing and operating 'industrial scale' detectors
- Science program focused on Dark matter searches, Neutrino science, Supernova

- Governed by a board represented by 5 Canadian universities
- SNOLAB consists of ~100 staff
 - Scientists, engineers, cleaners, trades, support services
 - ~40 staff underground everyday
- User base of ~500
 - International collaborations of physicists
 - Technical support staff (engineers, technicians)

Project: OSIsoft Seminar

Why Underground

- Experiments are very sensitive
- Background radiation (cosmic) introduces unacceptable 'noise'
- 2km of rock acts as a filter to screen out cosmic radiation
- Neutrinos, dark matter will essentially pass through unaffected.

Why Clean

- Mine rock contains trace amounts of radiation (U, Th)
- Operate as a large clean room to prevent contamination of experimental components

Sudbury Neutrino Observatory (SNO)

- Designed and constructed throughout the 90's
- Experimental operation began in 1999 and ran until 2006
- Purpose built to solve the solar neutrino problem
 - Allowed detection of all types of neutrinos past experiments were unable to do this
 - Used 1000 tonnes of heavy water (\$300M worth)
- Resulted in Dr. Art MacDonald being awarded the Nobel Prize for Physics in 2015
- Success of experiment led to the application to expand the existing facility

SNOLAB

- Evolution from a single experiment into a host facility for multiple international experiments
- Included an expansion of existing facilities
 - Excavation started in 2006
 - New spaces 'went clean' by 2010
 - Increased clean space from:
 - 12,196ft² to 53,180ft²
 - 470,360ft³ to 1,314,973 ft³
- Currently host to a suite of experiments in various phases of design, construction and operation

THE SCIENCE

Neutrino Physics

- Original SNO experiment confirmed models of how the Sun burns
- Determined that the Neutrino has a mass added new physics to the standard model
- Going forward
 - What is the neutrino mass
 - Why is the earth hot geo neutrinos
 - How do stars explode supernovas
 - Precision measurements on solar neutrinos
 - Are neutrinos there own anti-particle (neutrinoless double beta decay)

THE SCIENCE

Dark Matter Searches:

- Seeks to answer what the Universe is made of
- Evidence shows that only a small fraction of the Universe consists of standard 'glowing' matter.
- Unaccounted for mass is termed 'Dark Matter'
 doesn't emit or reflect light
- Candidate particle is termed the Weakly
 Interacting Massive Particle or WIMP for short
- By building large detectors hope that particles will strike targets and produce detectable signals

THE SCIENCE

Biomedical Studies:

- Effect of background radiation on cancer rates in cells
 - Studies shown that lose doses of radiation actual provide resiliency against cancerous growths during high dose radiation
 - Extrapolating hypothesis to cells grown in radiation free environments
- Study impacts of travelling underground on fruit fly metabolism – study possible relation to miners

- SNOLAB is a sizeable facility with multiple control systems collecting data (BAS, DCS, PLCs, UPSs) in different locations (surface, underground)
- We used to have no easy way to integrate data from all of different systems
- Creating trends or correlations would take hours if not days
- Reached out to OSIsoft in 2012 Provided a PI Server currently running at around 2000 tags
- Two main exploitations of our PI systems
 - Process control, optimization and troubleshooting
 - Data availability to experiments

Process Optimization

- Use PI ProcessBook and PI DataLink
- The ease of access leads to
 - Noticing problems
 - Solving Problems
 - Increasing system performance and reliability

System Troubleshooting

- Diagnosing problems allow easy preparation of trends
- Off-hour analysis order of magnitude easier
- No remote access to system necessary
- Easily layer relevant tags
- Solve issues or come to conclusions in minutes not hours
- Back to bed sooner than later

Date: October 17th, 2017 Project: OSIsoft Seminar

Allan Barr

Data Availability

- Experiments are extremely sensitive
- Need to be able to cross reference detector performance to environmental and process data
- Required a solution that provides "Professor Proof" access to data
- Flexible enough to pull data in a specific manner for data analysis
- No drain on SNOLAB resources

```
self.fout.Close()
def Done (self) :
    print 'Thank you for using PiReader. All data read in as been saved in\n(
def GetAllTags (self) :
    # Doesn't display anything to the user. It simply loads the information is
    logging.basicConfig(level=logging.INFO)
    search url = 'http://pi.snolab.ca/PIWebServices/PISearch.svc?wsdl
    search_client = Client(search_url)
        # All available PI Tags
    pi paths - search client.service.FindPIPathsBasic('pi.snolab.ca', '*', '*
    # don't care of this is deep or shallow copy. Check if you do.
    self.pi_path_list = pi_paths.Path
def FilterTags(self, filter):
    # Gets all the tags and then runs them through a case INsensitive
    # comparison with the Filter.
    # Example: r.FilterTags("cuBE") will find all tags with "Cube" in the name
    self.GetAllTags()
    for tag in self.pi_path_list:
        if ( str.lower(str(filter)) in str.lower(str(tag)) ):
            print tag[18:]
def PrintAllTags (self):
    # A straight dump to screen of everys ingle available tag.
    for tag in self.pi_path_list:
        print tag[18:]
def ReadTag(self,tagName):
    rootTagName = re.sub(" ", " ", tagName)
    rootTagName = re.sub("-", " ", rootTagName)
    rootTagName = re.sub("/", " ", rootTagName)
    # Set up ntuple - set name fixme
    nt - TNtupleD(rootTagName, rootTagName, "Y:M:D:h:m:s:dt:value")
    nt.SetMarkerStyle(20+self.readCounter)
   nt.SetMarkerColor(self.readCounter+1) #+1 avoids white
    # set up pi read
    logging.basicConfig(level=logging.INFO)
    timeseries url = 'http://pi.snolab.ca/PIWebServices/PITimeSeries.svc?wsdl
    timeseries client - Client (timeseries url)
   piarcdatarequest = timeseries_client.factory.create('PIArcDataRequest')
    stringStart = self.startTime.strftime("%Y-%m-%d %H:%M:%S")
    stringStop - self.stopTime.strftime("%Y-%m-%d %H:%M:%S")
    piarcdatarequest.TimeRange.Start - stringStart
   piarcdatarequest.TimeRange.End = stringStop
    piarcdatarequest.PIArcManner. NumValues = '10000000' # Max number of point
    sensorName = self.pi url + tagName
   piarcdatarequest.Path - sensorName
    requests = timeseries_client.factory.create('ArrayOfPIArcDataRequest')
requests.PIArcDataRequest = [piarcdatarequest]
    returned arcdata = timeseries client.service.GetPIArchiveData(requests)
    icount = 0
if not hasattr(returned_arcdata.TimeSeries[0], '_UOM'):
        returned arcdata. TimeSeries[0]. UOM =
```


Summary

- Our mission is to deliver world class science
- PI facilitates this by:
 - Allowing us to improve the performance and reliability of our systems
 - Minimize the resource load for troubleshooting issues
 - Providing facility and process data to experiments

End.

Questions?

BACKUP SLIDES

EVIDENCE FOR DARK MATTER

Substantial evidence that dark matter exists:

- Rotational Speed of Galaxies
 - Spinning faster than it should
- Gravitational Lensing
 - Bending light more than it should
- Bullet Cluster
 - After effects of galaxy clusters colliding
 - Visible matter showed signs of collision – gravity centers did not

Liquid Argon Target (DEAP/MiniCLEAN)

- Dark Matter collision produces nucleous recoil
- Recoil produces light
- Detector surrounded by sensitive light detectors

Use signal characteristics to screen out

background events

Bubble chambers (PICO)

- Superheated fluid in extremely pure container
- Temperature and pressure controlled to bring into superheated state
- The 'kick' to cause bubble nucleation comes from dark matter or neutron collision
- Look and listen for bubble formation

Ge and Si Crystals (SuperCDMS)

- Extremely pure Ge and Si act as radiation detectors
- Cool to near absolute zero, shield, and monitor
- Record electrical signal generated

CCD Technology (DAMIC)

- Take pictures of nothing
- Cool to near absolute zero, limit all light and radiation
- In theory the only thing creating tracks is something you don't understand