

Implementation of CAMO Process Pulse to enable online multivariate data evaluation in real-time

Presented by

Dr. Tobias Merz Global OT Manager

#OSISOFTUC ©2017 OSIsoft, LLC

Corporate

Implementation of CAMO Process Pulse to enable online multivariate data evaluation in real-time

Tobias Merz | Digital Transformation Team | 21 September 2017

Lonza Group Ltd has its headquarters in Basel, Switzerland, and is listed on the SIX Swiss Exchange. It has a secondary listing on the Singapore Exchange Securities Trading Limited ("SGX-ST"). Lonza Group Ltd is not subject to the SGX-ST's continuing listing requirements but remains subject to Rules 217 and 751 of the SGX-ST Listing Manual.

Certain matters discussed in this presentation may constitute forward-looking statements. These statements are based on current expectations and estimates of Lonza Group Ltd, although Lonza Group Ltd can give no assurance that these expectations and estimates will be achieved. Investors are cautioned that all forward-looking statements involve risks and uncertainty and are qualified in their entirety. The actual results may differ materially in the future from the forward-looking statements included in this presentation due to various factors. Furthermore, except as otherwise required by law, Lonza Group Ltd disclaims any intention or obligation to update the statements contained in this presentation.

- Introduction
- Motivation and Vision
- Current Challenges
- Roadmap Data Analytics
- Implementation Project
- Process Pulse Structure
- Pilot Project
- Summary

Lonza at a Glance

Adding Capsugel in June 2017

"A trusted supplier to the pharmaceutical, biotech and specialty ingredients markets"

Lonza

Lonza's Target Markets

and Technology Platforms with Addition of Capsugel

Microbial Control Performance & Testing

Regulatory

Problem

- No standardization (within groups, file formats, sensors, ...)
- No interfaces of sensors
- No infrastructure for data
- No common data evaluation tools
- No interfaces to other systems e.g. LIMS, CDS, OSI-PI
- No data integrity, data availability, data accessibility

- 1. PAT Data Management
- Integration of MVA data
- Common data storage
- Raw data 21part11 compliant
- Data recording
- Audit trail

2. Control

- Common interface for instruments
- Triggering start/stop of data recording
- Traceable reference measurements

- 3. Evaluation
 - Online evaluation possible
 - Integration of univariate models
- Integration of multivariate models
- Model management
- 4. Export/Reporting
 - Easy extraction of experimental data
 - Export of graphics
- Link with other systems (GDM, PI, LIMS,...)
- Sharing Information via Web

Road Map

Lonza

Operations Digitalization Pyramid

Following a Maturity Level Approach

Level	Digital Focus	Vision: Industry 4.0	OT System
Stage 5	Fully Digitalized Sites	self-optimizing plant	 Advanced site wide control systems Digital Twin
Stage 4	Self Optimization	ACTION	ML, Artificial Neural Network Mechanistic Understanding
Stage 3	Process Prediction	DECISION	 Process Pulse to visualize and model process data Empiric Information Process Understanding Process Models
Stage 2	Process Understanding	INFORMATION	 PI ProcessBook Functionality/Causality Interactions Classification
Stage 1	Data Visualization	DATA	 PI Vision OSIsoft PI System Framework Consistency Error detection Reproducibility Trend analytics
Base	No D(CS, Manual production, Documentation	paper • none

Road Map

Process Pulse

2009		2014	2017
Evaluation	Aim/Specifications Strategy Project Organization Realization	Development	Implementation
 Needs Requirements Costs/benefits Risks Market screening SIPAT SynTQ xPAT PP 	 Aim definition Specifications Feasibility Alternatives Concept Project layout Risk analysis 	 Project team Interfaces to ELN Concept for LA 	 Pilots PAT Group Fermentation Group

Concept of Process Pulse

Lonza

Architecture in R&D

Development of Interfaces

Use Case: Pilot Study in Production Scale

Combining Multivariate Data with Process Data

Use Case: Pilot Study in Production Scale

Solution with Process Pulse

Problem:

Running a pilot of a gas reaction with online mass spectrometry needs to be optimized

- Large number of process variables has to be managed
- Online Mass spectra has to be integrated
- Online Yield calculations from different data streams
- Calculations of yield are based on initial parameter set
- Project team is located on four different sites

Benefits:

- Visualization of theoretical and current yield from reaction
- Identifying steady stead of reaction
- Online optimization of reaction
- Sharing the results for all project members on four different sites

Business Case

- 1. Increase efficiency and higher data quality by avoiding "copy-paste"
- 2. Speed up data evaluation for science based decisions
- 3. Early detection of unforeseen events
- 4. Modeling of steady-state behavior
- 5. Providing process information (for process optimization in R&D and production)
- 6. Enabling a team approach over different Sites

- 1. Combining multivariate and univariate data streams in one system
- 2. Enable data evaluation "on-the fly"
- 3. Documentation of all meta data
- 4. "Single point of truth"
- 5. Automation in data analytics
- 6. First pilots are successfully implemented

The PI System as a fundament for Process Analytical Technology Applications

COMPANY and GOAL

Serving today's and tomorrow's market needs by bringing biotech and specialty chemical expertise to our customers.

Lonza

CHALLENGE

No infrastructure for multivariate - and process data to enable multivariate data analytics

- Spectral data stored in silos
- Models integrated only in the proprietary systems
- No link with process data

SOLUTION

Process Pulse is a platform to connect to different data sources and enable online multivariate data analytics

- One common storage for spectral data
- One GUI for all PAT instruments

RESULTS

Increase efficiency and higher data quality by avoiding "copy-paste"

- Instead spending 80% time for data gathering, now is 80% time for data evaluation
- "Playing with the dashboards makes fun"

Dr. Tobias Merz Tobias.Merz@Lonza.com Global OT Manager Lonza Ltd.

Questions

Please wait for the **microphone** before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

#OSISOFTUC ©2017 OSIsoft, LLC