

Data science and predictive analytics in virtual power plant environment

Piotr Szeląg, PhD

Presented by Sebastian Dudzik, prof. CUT

Częstochowa University of Technology

Presentation Agenda

- Virtual Power Plant at Faculty of Electrical Engineering
 - Idea
 - Assets
 - PI System in VPP
- Data science and predictive analytics
- Methodology of data analysis
- Results of data analysis
- Conclusion and next steps

Vitrual Power Plant - Idea

- A group of producers, consumers
- Control and monitoring system (PI System)
- Predicting demand/production of electric energy
- Balancing inside group
- Connecting with electric network

VPP in Czestochowa - assets

photovoltaic panels

wind turbines

smart meters

weather station

air quality sensors

VPP in Czestochowa – real time computer system

PI System in VPP

PI System in VPP

Examples of analyses

PLAsset Framework

Balancing/veryfication of electricity consumption

- Ability to balance logically coherent items:
 - Area
 - o Building
- Localisation of illegal energy consumption sources
- Identification of abnormal behaviours
- Detecting change in the profile of electricity consumption

Energy balance of a building

Pavillion F	[kWh]: 35837,26
Cold water aggregate	[kWh]: 3126,22
	[kWh]: 7923,01
Floor 4	[kWh]: 2119,40
Floor 3	[kWh]: 3259,22
Floor 2	[kWh]: 3086,72
Floor 1	[kWh]: 12177,88
Garage, floor 1 & 2	[kWh]: 3336,94

Balance [kWh]: 807,88

The total from the meters is smaller than the readings from pavillion's main meter

Illegal eletcric energy consumption?

Consumption between the main meter and the other meters – the lift

Monitoring - PI Coresight

Optimum tariff choice (customer)

Customer's ability to:

- Plan electricity consumption (e.g. during lectures)
- Choose an optimum tariff
- Use of stored energy
- Forecast production / consumption of electricity

Data science and predictive analytics

- Computer science
- Math & statistics
- Machine learning
- Domain knowledge
- Predicting the future

Typical data science workflow

13

Methodology of data analysis

- Cleaning data
 - Missed time rows
 - Missed values (imputation)
- Dividing data into the subsets
- Choice a time ranges meeting some selected criteria:
 - annual time range
 - semester time range
 - season time range

Methodology of data analysis (continued)

- Applying the 'mean profile' method ('naïve') for prediction of the power consumption profile for a selected day of the week
- Analysis of prediction accuracy

Exemplary day profile analysis (annual average: Wednesday 2015, 2016)

2015

2016

Exemplary day profile analysis (season average: Friday)

Spring

Summer

Exemplary day profile analysis (season average: Friday)

Fall

Winter

Exemplary day profile analysis (season average: spring 2015)

Monday

Thursday

Exemplary week profile analysis (season average: 2015)

Conclusions

- Profile analysis has shown that even the naive method gives good results
- This is due to the stability of the electricity consumption of the analyzed object during the considered time periods
- Further research is needed including other prediction and validation models (cross validation, etc.).

Next steps

- Challenge: Incorporation of renewable energy sources and existing energy storage (the analysis covered years where renewables and storage were not included in VPP)
- Challenge: Transfer of analytical algorithms from Matlab to PI Analytics
- Implementation of anomaly detection algorithms (too big or too small consumption) - PI Analytics and PI Notifications

Piotr Szeląg, PhD
szelag@el.pcz.czest.pl
Vice-Dean for Students Affairs
Czestochowa University of Technology
Faculty of Electrical Engineering

Sebastian Dudzik, prof. CUT

sebdud@el.pcz.czest.pl

Director of the Institute of Optoelectronics and Measurement Systems

Czestochowa University of Technology

Faculty of Electrical Engineering

Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Download on the

Google Play 5 HTML

App Store

감사합니다

Danke

谢谢

Merci

Gracias

Thank You

ありがとう

Спасибо

Obrigado

Dziękuję

