

Demystifying the Data Center

Presented by **Brandon Lake (Casne Engineering) & Stephanie Gupana (Digital Realty)**

#OSIsoftUC

Conference Theme and Keywords

USERS CONFERENCE 2017

Analytics Energy Management
Regulatory Compliance Time Series Real-time Event Frames
Open System Digital Transformation
Open System Series Real-time Event Frames
Open System Series Real-time Event Frames
Open System Digital Transformation
Sensor-based Data lo T Operational Intelligence Quality Integrators Connectivity Integrators Process Scalability Partner Enterprise Agreement Business Impact Operational Efficiency Safety Streaming Data Ecosystem ition Asset Framework
Big Data Future Data PI System Visualization

Digital Realty

ONE OF THE LARGEST **GLOBAL DATA CENTER** PORTFOLIOS IN THE **INDUSTRY**

150 +

PROPERTIES (1)

33+

METROPOLITAN AREAS (1)

26

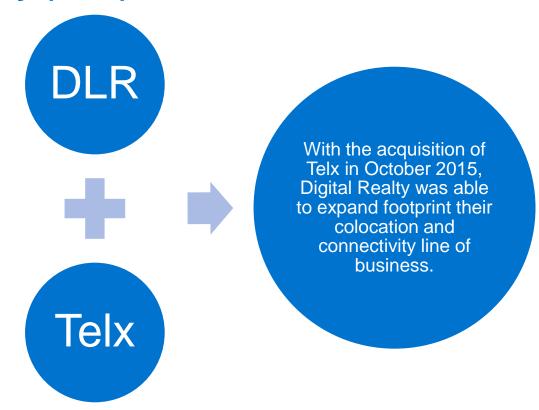
MILLION RENTABLE SQUARE FEET (2)

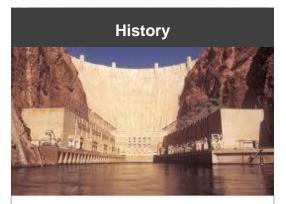
As of March 31, 2016. Includes investments in fourteen properties held in unconsolidated joint ventures.

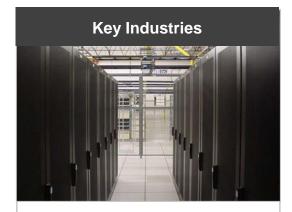
As of March 31, 2016. Includes 1.8 million square feet of active development and 1.2 million square feet held for future development.

Balance sheet figures reflective of quarter end March 31, 2016, adjusted for the €600 million Euro bond offering on April 15, 2016. Closing stock price was \$94.40 as of May 13, 2016.

U.S. REITs within the RMZ. Source; companies' financials based on latest public filings. Based on equity market capitalization as of March 31, 2016.


These credit ratings may not reflect the potential impact of risks relating to the structure or trading of the Company's securities and are provided solely for informational purposes. Credit ratings are not recommendations to buy, sell or hold any security, and may be revised or withdrawn at any time by the issuing organization in its sole discretion. The Company does not undertake any obligation to maintain the ratings or to advise of any change in ratings. Each agency's rating should be evaluated independently of any other agency's rating. An explanation of the significance of the ratings may be obtained from each of the rating agencies.


Digital Realty (DLR) & Telx


E CASNE Engineering™ ADVANCED DESIGN & INTEGRATION

- Founded in 1979
- **Employee-Owned**
- Comprised of Engineers, Integrators, Technologists
- Trusted Advisors

- OSIsoft Partner Since 2001
- Technology Partner with: ESRI, Schneider, Rockwell, Siemens
- Over 500 clients
- 200 OSIsoft PI System projects

- Data Centers / Facilities
- Power and Utilities
- **Process Industries**

What is a colocation data center?

- Type of data center where space (facility/floor/suite), power, cooling, security and network equipment are available to rent for retail customers.
- Colocation data centers are able to connect retail customers to a variety of telecommunications and network service providers.

DLR operates 20+ colocation data centers across the US (some of which are landlord owned), 79 floors, 90+ suites.

What is a Colocation Product & its Requirements?

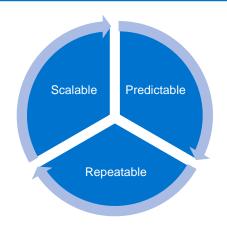
Colocation

Enabling small (1 Cabinet) to medium (300kW Cage) deployments

Ability to quickly deploy computing infrastructure in days, contract for 2-3 years

Consistent designs, operational environment and power expenses

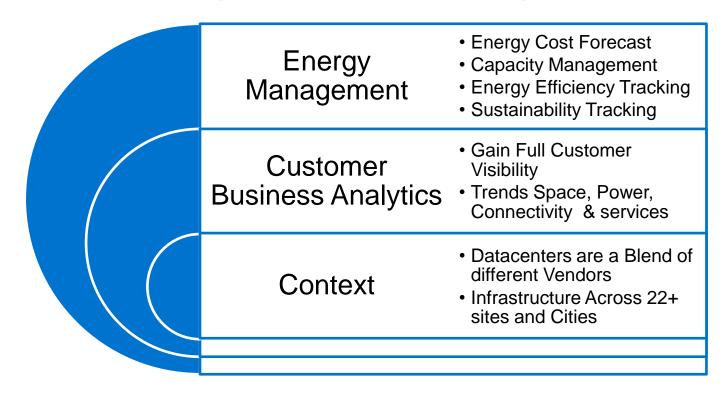
SPACE


Cabinets & Cages

POWER

kW model and Breaker

Requirements to be Successful?


- A Fast, Predictable & Repeatable Quote to Cash Process.
- Technical Tools that can be an Integral Part of the Colocation Process.

Colocation: Energy & Capacity Management

@ osisoft

Challenge

The ability to collect, aggregate, normalize, analyze, and present data center operations and asset performance information across portfolio.

Real - Time Performance Metrics

Automated Reports

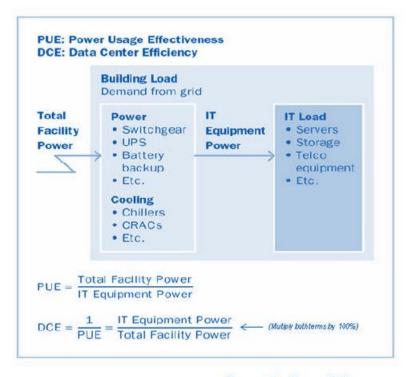
Integrate with upstream and downstream systems

Use Case Focus Areas

Power Usage Effectiveness (PUE) Customer Usage Circuit Allocation & Capacity Planning

PUE you say....?

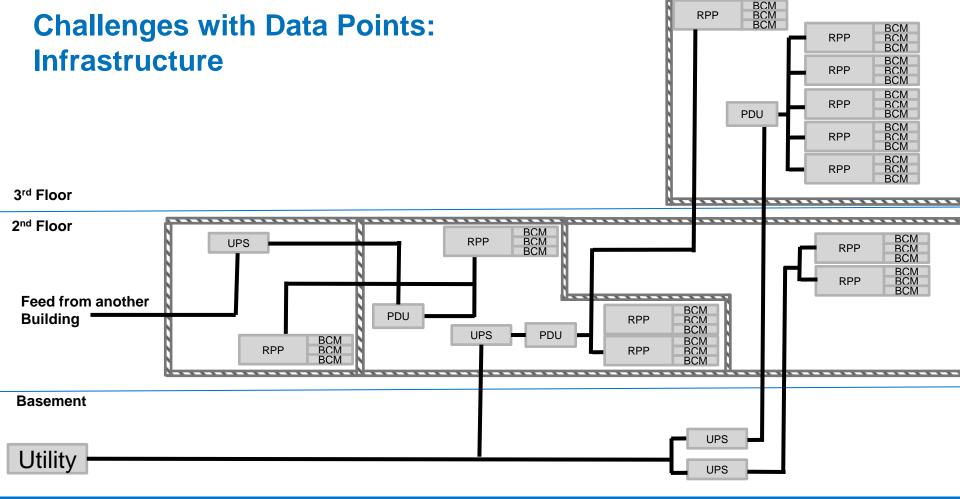
 PUE (Power Usage Effectiveness) is the metric to base efficiency or how well a data center uses energy.


 Also used as a baseline to ensure that operational changes are showing measurable changes in efficiencies.

All federal agencies are mandated to report <1.4 PUE on their Data Centers by 2018 (<1.2 is encouraged)

@osisoft

PUE Data Points



Source: The Green Grid

Other challenges with Data Points

- PUE calculations can become very complex anytime power leaves or enters a boundary.
- DLR colocation teams had to manually take down data every week.
- Data tracking tool was based in excel.

#OSIsoftUC

Approach

Identified the Business Requirements

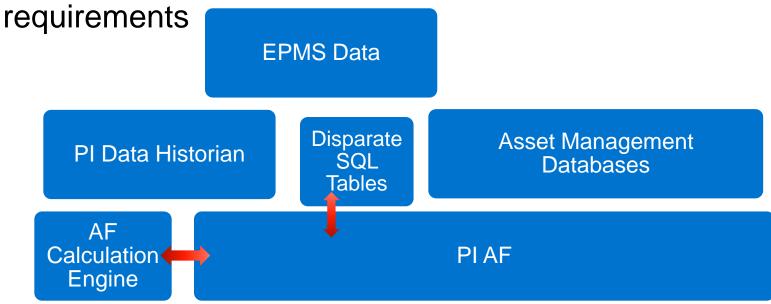
- Data Visibility and Real-Time Situational **Awareness**
- · Seamless roll-out to the business and a lower TCO

Determined the technical requirements and data gaps

- Thousands of assets each with hundreds of inputs and calculations
- Disparate data sources and gaps in context data

Partnered with the customer to find a solution that meets these needs

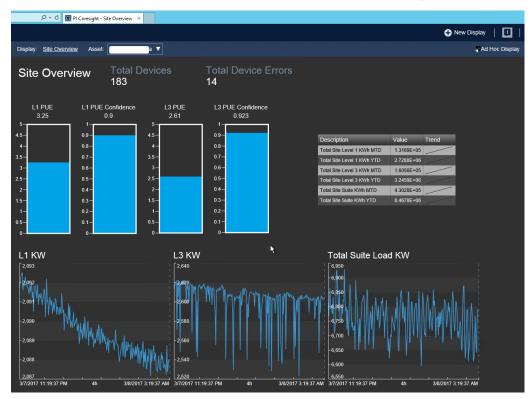
- Utilizing Connected Services to host a solution
- Connected hardware to PI and set up PI AF Templates to work as the backend for data future project needs



Approach – A solution infrastructure

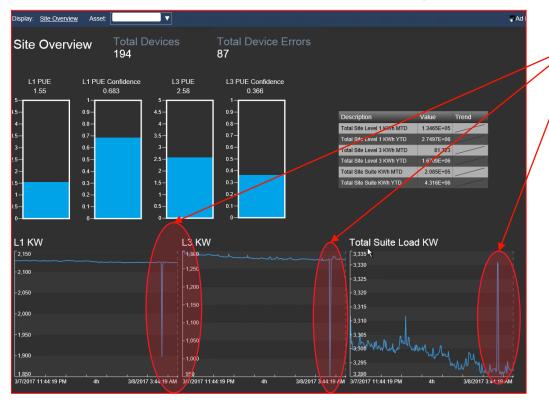
We needed a platform that could handle these requirements

Data Structuring Model


- Worked with Digital Realty to understand data requirements.
- Developed a templated data model in PI AF to help with tag consistency, situational awareness, and reporting

	TD =====iti== 4 =	_	'\ Start Position ID';
Base Power Circuit ID	ID For position 1 o	0	,
⊞ BasePath	OPC tag path of th	None	'Building';" ";'Suite';" ";'\\ De
🖫 Building	Location		SELECT Building FROM [EDW_L
E Channel	Name of Channel		SELECT Path FROM ChannelRe
Circuit ID	Identifier for all ot	0	A=Base Power Circuit ID;B=Ch
Customer	Customer Name	None	SELECT CustomerName FROM
EquipmentName	Which Measureme	0	SELECT [Device Name] FROM
□ ID	Unique Identifier f	0	SELECT Id FROM [NYC_Cust_C
Is_Available	Is this pole Available	0	
Number of Poles	How Many poles is	0	SELECT NumPoles FROM [NYC
PanelType	Base Channel Refe	0	
🖫 Secondary Channel	Name of Channel (0	A=ChannelNumber;[A+2]
Sold Amps	How many amps h	0	SELECT [MLOAD_AMPS_A] FRO
Start Position ID	Position of Channe	0	SELECT PowerCircuitId FROM
≣ Suite	Physical Location o		SELECT [Physical Location] FR
🖫 Tertiary Channel	Name of Channel (0	A=ChannelNumber;[A+4];max
□ Voltage	Breaker Applied Vo	0 V	SELECT Volts FROM [NYC_Cus

Data Visibility and Reporting



Utilized data from calculations in PI AF in PI Coresight

Data Visibility and Reporting

- Visualize and alert on sudden changes in load
- See this for any Suite in the portfolio

Data is structured and available down to the Channel level

	U	-	U		<u>.</u>	
Column2		▼ ▼	1Pole Available	¥	2 Poles Available 💌	3 Pole Available 🔻
NYC2:	: RPP_101 Panel 5B\Channels\Channel0:	1	Available			
NYC2:	: RPP_101 Panel 5B\Channels\Channel3	7	Available		Available	Available
NYC2:	: RPP_101 Panel 5B\Channels\Channel3	9	Available		Available	
NYC2:	: RPP_101 Panel 5B\Channels\Channel4:	1	Available			
NYC2:	: RPP_101 Panel 5B\Channels\Channel4	2	Available			
NYC2:	: RPP_101-D\Channels\Channel14		Available			
NYC2:	: RPP_101-D\Channels\Channel37		Available		Available	Available
NYC2:	: RPP_101-D\Channels\Channel39		Available		Available	
NYC2:	: RPP_101-D\Channels\Channel41		Available			
NYC2:	: RPP_101-D\Channels\Channel42		Available			
NYC2:	: RPP_101E\Channels\Channel17		Available			
NYC2:	: RPP_101E\Channels\Channel25		Available		Available	Available
NYC2:	: RPP_101E\Channels\Channel27		Available		Available	Available
NYC2:	: RPP_101E\Channels\Channel29		Available		Available	Available
NYC2:	: RPP_101E\Channels\Channel31		Available		Available	Available
NYC2:	: RPP_101E\Channels\Channel33		Available		Available	Available
NYC2:	: RPP_101E\Channels\Channel35		Available		Available	Available
NYC2:	: RPP_101E\Channels\Channel37		Available		Available	Available
NYC2:	: RPP_101E\Channels\Channel39		Available		Available	
NYC2:	: RPP_101E\Channels\Channel41		Available			
NYC2:	: RPP_101-G\Channels\Channel20		Available			
NYC2:	: RPP_101-G\Channels\Channel29		Available			
NYC2:	: RPP_101-G\Channels\Channel36		Available		Available	Available
NYC2:	: RPP_101-G\Channels\Channel38		Available		Available	Available
NYC2:	: RPP_101-G\Channels\Channel40		Available		Available	
NYC2:	: RPP_101-G\Channels\Channel42		Available			
NYC2: DLIN-0	: RPP 102E\Channels\Channel17	·	Available			
	Total 61	0_			-	

- Reports filtered by Panel, kW, Customer or any other parameter.
- Quick Views on Pole **Availability**

Total 61.81

Next Steps

- Automatic PI AF Updates for physical changes
- OSIsoft PI Integrator for Business Analytics
 - Phase Balancing
 - Cooling Zone Modeling
 - Sq. Footage Accounting

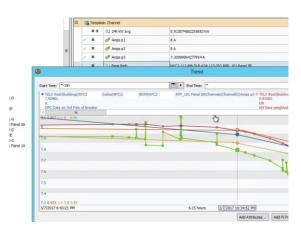
Goal

The ability to collect, aggregate, normalize, analyze, and present data center operations and asset performance information across portfolio.

Real - Time Performance Metrics

Automated Reports

Integrate with upstream and downstream systems



Summary

COMPANY and GOAL

Digital Realty aims to collect, normalize, and store high fidelity real-time and history-based data across multiple colocation facilities.

CHALLENGE

Infrastructure challenges and integrating a variety of upstream and downstream data systems for centralized visibility.

- 19/21 facilities in portfolio are landlord owned, resulting in data visibility & data acquisition challenges.
- · IT security restrictions.

SOLUTION

Connected services from OSIsoft and Casne made bringing in millions of data points from a variety of sources sensible

- A hosted solution with data storage and full integration to all equipment
- Not held back by data point counts or point license limitations

RESULTS

An infrastructure platform that makes finding data across multiple colocation facilities simple

- Time Savings (over 50%) in viewing reports
- · Cost savings in identifying and alerting on problems earlier
- Multi-use tool
- · Reduction of manual editing
- · Immediate data availability

Contact Information

Brandon Lake

brandon.lake@casne.com

Data Science Practice Manager

Casne Engineering

Stephanie Gupana

sgupana@digitalrealty.com

Energy Business Analyst

Digital Realty

Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Download the Conference App for OSIsoft Users Conference 2017

- · View the latest agenda and create your own
- · Meet and connect with other attendees

search OSISOFT in the app store

http://bit.ly/uc2017-app

감사합니다

Merci

Danke

谢谢

Gracias

Thank You

ありがとう

Спасибо

Obrigado

