

Improving Distribution Reliability with Smart Fault Indicators and the PI System

Presented by Cameron D. Sherding, Sr. Software Engineer

Profile of DTE Electric

- 12th Largest US electric utility
- 2.2 million customers
- 671 distribution substations
- 46,000 miles of power lines

Customer	Count	Load
Residential	1,920k	34%
Commercial	197k	44%
Industrial	1k	22%

Business Challenges

Reduce CAIDI = average duration of power outage

1. Ground crews need to locate faults faster

- Quickly locating the source of these faults is critical to minimizing restoration time
- Circuit patrol times can take up to an hour

2. Increase visibility of electrical load on circuits

- Aging substations may be demoed in the near future
- SCADA is not a cost-effective option

#OSIsoftUC

Business Challenge

Patrol times are long when you don't know where the fault is

Examples of Ground Faults

Contact with Trees

Failing Pole Top Transformer

Failing Underground Cable

Sensors provide visibility into fault location

Downsides with going straight to the cloud

Data is isolated from other OT data eg: SCADA / EMS / GIS

Requires training a team on new tools

Complicates using new sensor vendors in the future

Project requirements

Must host our own data

Must integrate with existing systems

© Copyright 2017 OSIsoft, LLC

An Infrastructure Approach to using IoT Sensors

Benefits

- Agnostic to sensor providers
- Easily scale from POC to full size deployment
- Seamless integration with backend systems

The Full PI stack at work

- **Collect**: PI Interface for DNP3
- Store/Contextualize: PI Server / AF
- **Deliver**: PI Notifications / AF SDK / Esri Arc GIS

Tollgrade Aggregator

AMI

Advantages of Wireless Sensors vs SCADA

- Capital Expense
 - SCADA is \$30K per install
 - Wireless is \$5k per installation
- **Deployment Time**
 - SCADA takes *months* to deploy
 - Requires a shutdown
 - Significant construction
 - Wireless takes *hours* to deploy
 - Can be installed on live wires.
 - 1 bucket truck and 2 people

#OSIsoftUC

Web Based Status Dashboard – Outage Response Team

Normal Conditions

Circuit	SFI	Type	X Amps	Y Amps	Z Amps	Status	Fault	Fault Amps X	Fault Amps Y	Fault Amps Z	Status
											ALL
<u>ALNPK1369</u>	SFI-A0118	Tollgrade	<u>252</u>	234	<u>235</u>	•••	000	-	-	-	Normal
ALNPK1671	SFI-A0117	Tollgrade	80	<u>81</u>	<u>55</u>	•••	•••	-	-	-	Normal
ALNPK1671	<u>SFI-A0115</u>	Tollgrade	<u>75</u>	<u>73</u>	<u>74</u>	•••	•••	-	-	-	Normal
ALNPK1833	SFI-A0116	Tollgrade	<u>148</u>	<u>0</u>	<u>130</u>	•••	•••	-	-	-	Normal
ALNPK1916	SFI-A0113	Tollgrade	218	<u>160</u>	<u>197</u>	•••	•••	-	-	-	Normal
ALNPK2044	SFI-A0112	Tollgrade	<u>285</u>	229	247	•••	•••	-	-	-	Normal

During Fault

PATON8920	<u>SFI-</u> <u>H0163</u>	42.484643	-83.220885	0	0	<u>25</u>	•××	•••	ו•	0	0	0	Power Out
PATON8920	<u>SFI-</u> <u>H0160</u>	42.502483	-83.214623	0	0	0	×××		999	0	0	0	Telemetry Error
PATON8920	<u>SFI-</u> <u>H0161</u>	42.502313	-83.214563	<u>0</u>	0	<u>o</u>	×××	×e×	999	3520	0	3520	Telemetry Error
PATON8920	<u>SFI-</u> <u>H0162</u>	42.488473	-83.221135	0	0	<u>o</u>	×××	99×	999	0	0	3520	Telemetry Error

Historical Data – Engineers/Planners

Display used by engineers

#OSIsoftUC

Outage Map – Service Operations and Dispatch

#OSIsoftUC

Outage Map – Engineering and Operations

Project History

- 95 locations
- Proof of Concept

- 600 locations
- AF SDK Map Integration

- 1200+ locations
- Full scale deployment

- 3000 locations
- PI Integrator for Esri ArcGIS
- **Underground Fault Detection**
- CYME project

DTE Energy: Reliability Through Innovation

"As an innovative utility, we were looking for solutions to get more real-time reliability data out of our distribution grid, particularly on older legacy and poorly performing circuits."

"Now that we have better real-time visibility into our grid, we can safely restore power faster and better plan our capital investments around aging assets before they cause outages."

Vince Dow

Vice President, Distribution Operations, DTE Energy

Business Challenges

- Determining where to send crews during outages to minimize patrol time
- Integrating data from different types of sensors with multiple backend systems
- Allow crews to visualize real-time sensor data in the field and engineers to visualize historical data in the office

DTE Energy®

Solution(s)

- Feed all sensor data into PI System using PI Interface for DNP3
- Utilize Asset Framework and Notifications to push events to field and DMS
- PI Coresight and PI ProcessBook to visualize historical data
- Utilize PI Integrator for Esri ArcGIS

#OSIsoftUC

Results and Benefits

- Visualization of sensor status on circuit map allows crews to divide circuit into segments and narrow search for faults. Expecting to eliminate at least 6.6 million customer outage minutes annually.
- History of device operation and circuit data gives valuable visibility into legacy parts of the system. To date, avoided spending \$25 million for equivalent SCADA solutions.

Contact Information

Cameron D. Sherding sherdingc@dteenergy.com

Sr. Software Engineer

DTE Electric Company

Less Wires, More Data: Harnessing new technology at the network edge

Presented by Martin Davis, Vice President of IT, J.D. Irving Ltd Keith Flynn, President & Founder, RtTech Software Inc.

Quality Service Quality Products Customer Satisfaction Since 1882 - 135 Years

A diversified group of companies, vertically integrated to support each other, committed to the future and continued business growth.

#OSIsoftUC

Operational Excellence Built on

Operational Intelligence

Powered by The PI System

IoT & OSIsoft – J.D. Irving & RtTech

What do we use the PI System for?

- Used across our Manufacturing plants
- Includes:
 - Paper Mills
 - Tissue converting
 - Diaper
 - Frozen Food

IoT & OSIsoft – J.D. Irving & RtTech IIoT Opportunities

- Capturing information, from anywhere, in real-time
- Optimizing production flow
- Condition-based maintenance automatically creating work orders
- Adjusting production speeds automatically to maximize production while minimizing energy
- Automated vehicles making data-driven decisions
- Transportation and Marine operations

IoT & OSIsoft – J.D. Irving & RtTech Common Challenges

- Assets not connected to the PI System have no real-time visibility
- What about limitations?
 - Isolated areas of a plant or in the field (outside the plant)?
 - Poor network quality?
 - Mobile assets?
- Or aging or outdated controls with low connectivity?
 - Upgrades are costly. Rip and Replace
 - Networking and installation significant

IoT & OSIsoft – J.D. Irving & RtTech Relationship

- RtTech and JDI are long term partners
- JDI helped design & develop RtDUET
- RtDUET and RtEMIS key components of our architecture
- Piloting Cipher
 - Scalable IIoT solution
 - Connect more to PI

IoT & OSIsoft – J.D. Irving & RtTech Solution: Less Wires, More Data

- Cipher is a drop-in Industrial IoT solution
 - Cost effective "No Rip and Replace"
 - Data from remote assets, integrated in real-time into the PI System
 - Seamless integration to your existing PI system

IoT & OSIsoft – J.D. Irving & RtTech

Solution: Less Wires, More Data

IoT & OSIsoft – J.D. Irving & RtTech

Cipher Connect Embedded Web

IoT & OSIsoft – J.D. Irving & RtTech Cost of a conventional "Wired" system

Monitor 10 Assets:

\$1000 per PLC CAPEX \$300 per device installation \$15/ft cabling/conduit & installation \$1000 System commissioning/test Total Project = \$31,500

"The main cost of an asset monitoring system isn't the system itself, but the cabling deployment costs."

- PI C
- PLC Install
- Cabeling & Installation
- System Commissioning/Test

IoT & OSIsoft – J.D. Irving & RtTech

Wired vs Wireless: Savings

Monitor 10 Assets:

\$600 Wzzard Gateway

\$300 Gateway Installation

\$6250 – 13 Edge Nodes

\$1650 Edge Node/Sensor Install

\$500 commissioning/ test per site

Total Project = \$9,300

\$22,200 in savings, nearly 70%!

5.38 6.45

IoT & OSIsoft – J.D. Irving & RtTech

Cipher Anatomy

Contact Information

Martin Davis

Davis.Martin@JDIrving.com Vice President of IT J.D. Irving Ltd

Keith Flynn

Keith@RtTechSoftware.com President and Founder RtTech Software Inc.

Questions

Please wait for the microphone before asking your questions

State your name & company

IHANK Y()[]

