Digital Blowout Preventer with the PI System

Presented by
Cyndi Bourne, Shell Global Solutions
Zev Arnold, Accenture
DEFINITIONS AND CAUTIONARY NOTE

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Resources plays: Our use of the term “resources plays” refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interests.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2014 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 28th September 2016. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No. 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.

Copyright of Shell International
COMPANY PROFILE

- Shell is an innovation-driven global group of energy and petrochemical companies
- We are active in more than 70 countries
- Worldwide, we employ 93,000 full-time employees
- Our fuel retail network has around 43,000 service stations
- On average, we produce 3 million barrels of oil equivalent per day (crude oil and natural gas).
- In 2015, we:
 - generated earnings* of $3.8 billion
 - had $28.9 billion of capital investment
 - spent $1.1 billion on R&D
- Royal Dutch Shell plc is a UK company, with its headquarters in the Netherlands
- We are listed on the stock exchanges of Amsterdam, London and New York

*On a current cost of supplies basis attributable to Royal Dutch Shell plc shareholders
Source: 2015 Annual Report and Form 20-F
Accenture is a leading global professional services company, providing a broad range of services and solutions in strategy, consulting, digital, technology and operations. Combining unmatched experience and specialized skills across more than 40 industries and all business functions – underpinned by the world’s largest delivery network – Accenture works at the intersection of business and technology to help clients improve their performance and create sustainable value for their stakeholders. With more than 394,000 people serving clients in more than 120 countries, Accenture drives innovation to improve the way the world works and lives. Visit us at www.accenture.com.
Agenda

Business Case
- Domain
- Business Approach
- Case for Change

Solution Overview
- Data
- Displays

Methodology
- Data Engineering
Digital BOP at Shell

COMPANY and GOAL
Shell provides well delivery support and wanted to improve the **reliability of blowout preventers** in their drilling contractor fleet.

CHALLENGE
Manual data reporting provided an incomplete understanding of BOP health and usage.

- Pressures and Temperatures available only via daily readings.
- Usage information limited to best-guess based on time.
- Failures not detected until they exhibited functional symptoms.

SOLUTION
Using the PI System as a data engineering toolkit, Shell implemented a BOP monitoring application.

- Three custom dashboards
- PI Coresight™ screens for ad-hoc trending
- Significant data processing to derive information from data

RESULTS
First instance of onshore detection of a control fluid leak in the industry.

- Onshore monitoring of regulatory testing
- Collection of previously unavailable usage information
- Organizational awareness of BOP health
What is a Subsea Blowout Preventer (BOP)

- Pressure Control Safety Equipment
- Used for Deepwater Drilling and Completion
- Installed on the Subsea Wellhead
- Operational Uses (Well Control)
- Emergency Uses (Shear and Seal)

Digital BOP - Case for Action

BOP is a Major Cause of Non-Productive Time (NPT)

- Testing & Certification
- Unplanned Maintenance
- Component Failures
- Stack Pull Decisions

Digital BOP Objectives

- Continuously Understand the BOP Condition
Digital BOP – BOP Reliability Team

Mission statement
The BOP RELIABILITY TEAM supports Shell’s deep-water drilling operations globally by increasing BOP reliability through engineering & operations support, and analysis of BOP performance data.

Operations
- Troubleshooting and Maintenance Support
- Regulatory Compliance Support
- Fleet Failure Tracking
- Real-time Operating Center (RTOC)

Engineering
- Shear Testing Support
- Accumulator Sizing
- Future Designs / Special Projects

Technology & Data
- Real-time Analytics
- Monitoring Dashboards
- Expert Systems
Digital BOP – Real-Time Operating Center (RTOC)
Digital BOP – Opportunities

Remote Certification
- Reduce trips offshore
- Lower cost for third-party surveyors

Failure Detection
- Leaks
- Seal failures
- Regulator failures
- Valve failures

Organizational Awareness
- Drilling Superintendents
- BOP Operations Team
- Regulatory

Reliability Statistics
- Cycle counts
- Pressure exposure
- Temperature exposure
- Time subsea

Operational Guidance
- Function selection
- Maintenance
- Testing Exceptions

Operational Guidance
- Reliability Statistics
- Organizational Awareness
- Failure Detection
- Remote Certification
Digital BOP – Leak Detected

- RTOC monitoring detected anomaly
- Rig investigated with ROV
- Leak was confirmed
- Operational guidance - MOC
Digital BOP – Available Data

Digital BOP uses available data from equipment and sensors to improve BOP performance and reliability.

Data sources include:

- 150 individual values
- 2 redundant electronic modules
- 2 redundant control pods
- 20 surface readings
Digital BOP – Custom Dashboards

Current state of valves and preventers

Valve state history bar chart

Headline readback pressures

* Note: Dashboard image does not represent actual readings.
Digital BOP – Custom Dashboards

HPU Boost Unit

Surface Accumulator

Subsea Accumulators

HPU Unit and reservoir

Shear Pressure Notifications

* Note: Dashboard image does not represent actual readings.
Digital BOP – PI Coresight Dashboards

- Pressure Trend Display
- Valve State Display
- Adhoc Trending

* Note: Dashboard image does not represent actual readings.
Methodology
Digital BOP – Data Engineering

Data engineering is the multi-disciplinary practice of **engineering** computing systems and algorithms to derive **information** from **data**.

<table>
<thead>
<tr>
<th>Disciplines</th>
<th>Considerations</th>
<th>Principles</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Integration</td>
<td>Scales well?</td>
<td>Modularity</td>
<td>Active BOP</td>
</tr>
<tr>
<td>Data Quality</td>
<td>User needs?</td>
<td>Immutability</td>
<td>Unit Scaling</td>
</tr>
<tr>
<td>Data Processing</td>
<td>Future-proofing?</td>
<td>Conformity</td>
<td>Valve States</td>
</tr>
<tr>
<td>Data Modeling</td>
<td>Technical debt?</td>
<td>Fit-for-Purpose</td>
<td>AF Hierarchy</td>
</tr>
<tr>
<td></td>
<td>Support?</td>
<td>Rawness</td>
<td>Data Outages</td>
</tr>
</tbody>
</table>
Digital BOP – Data Engineering Example

“Active” BOP

- Each rig has 2 BOP’s
- Only one BOP is connected to the control system at a time
- Data must be segregated by connected, or “active”, BOP
- Use cases:
 - Cycle counting
 - Failure detection
Digital BOP – Data Engineering for Time-series Data

Consumption
- AF SDK
- PI Coresight™

Processing
- Asset Analytics
- PI OLEDB Enterprise

Modeling
- Asset Framework

Storage
- Data Archive
- Event Frames

Ingestion
- PI Interfaces
- AF SDK

The PI System® provides an integrated suite of software tools that implement a data transformation layer for operational data.
Digital BOP at Shell

COMPANY and GOAL
Shell provides well delivery support and wanted to improve the **reliability of blowout preventers** in their drilling contractor fleet.

CHALLENGE
Manual data reporting provided an incomplete understanding of BOP health and usage.

- Pressures and Temperatures available only via daily readings.
- Usage information limited to best-guess based on time.
- Failures not detected until they exhibited functional symptoms.

SOLUTION
Using the PI System as a data engineering toolkit, Shell implemented a BOP monitoring application.

- Three custom dashboards
- PI Coresight™ screens for ad-hoc trending
- Significant data processing to derive information from data

RESULTS
First instance of onshore detection of a control fluid leak in the industry.

- Onshore monitoring of regulatory testing
- Collection of previously unavailable usage information
- Organizational awareness of BOP health
Contact Information

Cyndi Bourne
cyndi.bourne@shell.com
PI Center of Excellence – PI
Product Owner
Shell Global Solutions

Zev Arnold
zev.arnold@accenture.com
Technology Consulting
Accenture, LLP
Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Download the Conference App for OSIsoft Users Conference 2017

- View the latest agenda and create your own
- Meet and connect with other attendees

Thank You

감사합니다
谢
Danke
Merci
Gracias
ありがとう
Спасибо
Obrigado