

Leveraging the PI System® in the Processing of Opportunity Crudes

Presented by **Gábor MUCSINA Process Information Expert**

Agenda

- Introduction
- Business Opportunity & Challenge
- Solutions:
 - Keeping process in control
 - Early fault detection
- Analytics and Decision Support Strategy

MOL Group

MOL is an integrated, independent, international oil and gas company, headquartered in Budapest, Hungary with a track record of over 100 years in the industry.

An Integrated Downstream Value Chain

- Integrated Fuels Value Chain:
 - 4 refineries, 2 Petrochem plants
 - Logistics including 2 000 retail stations
- PI System® Overview:
 - 3 HA collectives, ~400K tags
 - Elements:
 - ~350 element templates
 - ~23K elements & growing
 - Events:
 - ~6K Notifications
 - ~10K Event Frames analyses
 - ~50K Event Frames in 2016
- PI Coresighttm is the primary process visualization platform

Digitalization Journay of MOL Group

PI AF- the Foundation of MOL's Distributed Analytics

Integrated Smart Fuels Value Chain Vision

Background – Alternative supply sources

- **Opportunity crudes, Seaborne supply sources:**
 - Discounted price
 - Flexible supply

- **Strategic target:**
 - Crude basket with 50 + grades

QUICKLY RESPOND TO MARKET CHANGES & OPPORTUNITIES WITH ALTERNATIVE/SEABORNE SUPPLY SOURCES AND A CRUDE BASKET WITH 50+ GRADES

Opportunities

Discounted price

- \$2 \$4 / BBI depending on crude type
- Can be negative in case of higher grade crude

- Quickly respond to market changes with crude selection
- Estimated benefit: \$1 \$3 / BBI
- 10 % alternative crude processing ~
 \$10M \$11M+ /Year/Refinery

Strategic goal: Increase seaborne crude processing to 33% by 2030

Challenge – Alternative supply sources

- Refinery was designed for a given type of crude
- No crude mixing fluctuation in process
- **Operations challenges:**
 - Crude Desalter Performance
 - Corrosion
 - Fluctuation in process
 - Unpredictable issues
 - Equipment Performance & Reliability
 - Fouling

Solution – Crude analysis, Asset upgrade

- Crude Assays
- Process Simulations
- Refinery Modeling

- Crude Blender
- Improvements of desalters and other assets

Solution – Increase Real-Time Situational Awareness

Issues

- Fluctuation in crude quality
- Changes in quality of semifinished products
- Disturbancies in process

Increased number of events to react

Solution

- Faster, proactive and predictive decision support
- Advanced analytics
- Equipment performance/CBM
- Failure detection, notification

Support Operational Awareness

Examples – Keeping process in control

Operation - Avoid harmful process conditions

- Integrity operating window (IOWs)
- Corrosion control & monitoring
- Feed composition tracking

Maintenance - Early failure detection

- Preventive & condition based maintenance
- Online statistical validation of controllers, sensors

Integrity Operating Window – Objective

Objective: Keep process safety parameters in control

Solution:

- Structure in PI Asset Framework (PI AF)
- Calculation, limit evaluation
- Advanced PI Analytics and PI **Event Frames**

Integrity Operating Window – User Experience

Visualization: PI Coresighttm

Work initiation: PI N suggested actions)

Results:

- Increased process safety
- Faster reaction
- Longer asset lifecycle

tifications (e-mail with						IOW paraméter tüllépés történt! Üzem: [Unit ID-Value] IOW paraméter leírása: Desc:Value IOW paraméter Pl Tag: Name:Value				
Functional location	HTHA Parameter Description PI Tag	Current T	HI Limit T	Trend T	IOW paraméter Coresight: CS Display:Value Az IOW paraméter jelenlegi értéke					
DKBI 101	Izomerizálo reaktor DKBIITH094.PVA	264.31	282.22	HTHA Trend	Current:Value Current:Units így tüllépte a minimum LO Limit T:Value vagy maximum Hi Limit T:Value határértéket A szükséges intézkedéseket az alábbi időkeren belül tegye meg: Devlation Action Timeframe:Value					
DKBI 176	Reaktor termék léghütő DKBIIT097.PVA	84.37	282.22	HTHA Trend						
DBK5 460V4	Kénmentesítő reaktor betáp előmelegítő cseppfogo - köpeny DBK5RTi2017.DACA.PV	240.80	291.36	HTHA Trend 200 280 280 240	Actions1:Value Actions2:Value Actions3:Value					
		125.70	290.98	HTHA Trend	Actions4:Value				1	
		160.30	282.47	HTHA Trend	25.97	800.00	HTHA Trend	25.97	100.	
		96.30	280.13	HTHA Trend	28.09	800.00	HTHA Trend	28.09	100.	
		150.65	254.82	HTHA Trend 260 220 180 440	71.86	800.00	HTHA Trend	76.01	94.5	
		184.33	258.52	HTHA Trend 1960	62.13	800.00	HTHA Trend	65.71	94.5	
		146.02	247.41	HTHA Trend 468 220 180	96.65	800.00	HTHA Trend	102.23	94.5	
		217.44	251.05	HTHA Trend 465	83.47	336.47	400, 250 150 60	92.46	90.2	
DHDSHT1290.PV			251.05	HTHA Trend	83.47	152.41	HTHA Trend	92.46	90.2	

※ 職 性 で で □ 目目 10 で 20 東 季 □

- 16 - A * A A B / U = = =

Corrosion Control & Monitoring

Objective: Support corrosion monitoring and water treatment

Solution:

- Comprehensive and logical structures in Asset Framework (AF)
- Visualization in PI Coresight, alerts in Notifications

Results:

Reduced corrosion → Cost savings

#OSIsoftUC

Corrosion Control & Monitoring—Chemical Treatment

Monitoring

- Online Coresight Display
- Monthly Corrosion Report

Actions

- Chemical Treatment program
 - **Process Treatment**
 - Water Treatment
 - **Amine System Treatment**
- Increased sampling frequency in case of alternative crude

Feed Composition Tracking – Background

Delayed Coker Unit (DCU):

- Semi-continuous, thermal cracking process
- Produces white components & coke

Wide variety of feedstock:

- Residuals from different crudes
- Heaviest oil from other conversion. processes, other refineries

USERS CONFERENCE 2017

Issue:

- Increased number of steam eruptions during coke cutting
- Increased drum vibration during coking and cutting

Safety risk

Feed Composition Tracking – Investigation

Datasources:

- Process data Event Frames
- Movement data Oracle database
- Laboratory data Oracle database
- Manual data Excel files

Complex data preparation and cleaning was needed

Azure Machine Learning with Python scripts

#OSIsoftUC

```
1 # imports up here can be used to
5 import pandas as pd
5 from datetime import datetime
7 import numpy as np
3 # The entry point function can contain up to t
      Param<dataframe1>: a pandas.DataFrame
      Param<dataframe2>: a pandas.DataFrame
1 def azureml main(dataframe1 = None, dataframe2
      df=dataframe1
      avgCols = [col for col in df.columns if co
      avgCols = avgCols + [col for col in df.col
      avgCols = avgCols + [col for col in df.col
      avgCols = avgCols + [col for col in df.col
      avgCols = avgCols + [col for col in df.col
      avgCols = avgCols + [col for col in df.col
      avgCols = avgCols + [col for col in df.col
      avgCols = avgCols + [col for col in df.col
      stdevCols = [col for col in df.columns if
      stdevCols = stdevCols + [col for col in df
      stdevCols = stdevCols + [col for col in df
      maxCols = [col for col in df.columns if co
       inCols = [col for col in df.columns if co
```


Feed Composition Tracking – Investigation

- Model building, analysis in Rstudio:
 - Gradient boosting model
 - Feature importance and visual analysis
- Most important factor:
 - RHC content of feed (RHC: heaviest product of Residual Hydrocracker)
 - It has to be kept above 10 %
 - Difficult to calculate online

Feed Composition Tracking – Online Calculation

RHC content of storage tank:

- Data: movement information in a Oracle database
- Frequency: daily

RHC content of feed tank:

- Data:
 - Valve positions
 - Tank volume change
 - Storage tank RHC Content
- Frequency: online

Storage tanks

Feed Composition Tracking – Online Calculation

- First step: Storage tanks:
 - Base data: material movement into storage tanks
 - Data import with PI RDBMS Interface
 - Daily calculation
 - Calculate the RHC content of storage tanks with a simple mixture calculation
- **Result**: RHC content of storage tanks (daily resolution)

Feed Composition Tracking – Online Calculation

- Second step: Feed tanks:
 - Base data: RHC content of storage tank, valve positions, online tank mass
 - Online data from DCS system
 - Hourly mixture calculation
- Result: RHC content of feed tank (hourly resolution)

Feed Composition Tracking – User Interface

Examples – Keeping process in control

Operation - Avoid harmful process conditions

- Integrity operating window
- Corrosion control & monitoring
- Feed composition tracking

Maintenance - Early failure detection

- Preventive and condition based maintenance
- Online statistical validation of controllers, sensors

Preventive and Condition Based Maintenance

Objective: a robust OT/IT system to support preventive maintenance strategies

Criteria:

- Flexibility and scalability (further strategies expected)
- Integrated solution (utilization of existing softwares)

Tools:

- PI System® → Main process database + Real time analysis
- SAP PM → Equipment database + Maintenance management tool
- **Solution**: Connection between systems

Preventive and Condition Based Maintenance

PI System®

- Process database
- Online analysis of process information
- Calculation of asset health
 - Asset condition
 - Running hours
 - Performance
 - Risk
- User Interface
 - PI Coresighttm
 - PI DataLinktm

Connection

(WebLogic)

Calculated asset health

Maintenance related information

SAP PM

- Maintenance database
- Management of maintenance processes
- Creation of work orders or notifications
- Trigger maintenance strategies based on asset health

Preventive and Condition Based Maintenance

- Flexible calculations in PI Asset Framework (PI AF)
- Interface with PI Web API

- Work Order creation in SAP PM
- Estimated benefit: \$230,000/year
- First working solution:
 - Preventive maintenance of pressure swing adsorber valves in Hydrogen Production Plants

#OSIsoftUC

Analyser Validation – ARGUS 3.0

- ARGUS 1.0:
 - Analyser validation with statistical methode in PI ProcessBook + VBA
- ARGUS 2.0
- Centralized calculation with PI Asset Framework (PI AF)
- Missing components
 - Further signal evaluation
 - Workflow management

Analyser Validation – ARGUS 3.0

New functionalities:

- Different validation methodes
- Wofklow management
 - Failure detection
 - Maintenance request
 - Validation request
 - Validation
- Common solution for analysers and soft-sensors
- PI Coresighttm based UI

Analytics & Decision Support Strategy-Distributed Analytics

- **Analytics with different** scope, scale and target:
 - Online calculations
 - Machine learning
 - Maintenance scheduling

USERS CONFERENCE 2017

- Etc ...
- Refinery is more than the sum of independent business and technological processes

"The whole is greater than the sum of its parts."

Aristotle

- **Decision supporting tools** have to be organized in an integrated system:
 - **Analytics are distributed** across components
 - Data and information flow through each element

Machine Learning

Operational Intelligence

Business Process

Offline Analysis

- Model building
- Investigation
- Data sources:
 - Process database: Pl System
 - Relational Databases
 - There are always extra Excel files
- Tools: PI Coresight^{tm,} RStudio, Azure ML
- Result:
 - Insight, Knowledge
 - Model

Into Operation

- Goal: put knowledge into operation
 - Results from an investigation
 - Model to run continuously

Platform:

Asset Framework (AF), the foundation

Connection

- Maintenance: SAP PM
- Operation: Shift Logbook + DCS

Visuals

- PI Coresighttm dashboards
- PI DataLinktm reports

Business Process

Maintenance

Plan

Released

work order

Unreleased

work order

Online issue and disturbance identification

Action

Solution

- Workflow management
- Feedback collection
- Support collaboration

Event based entries to inform operation or collect feedback

Notification

Targeted notifications with suggested actions

Tools:

- SAP PM, Shift Logbook
- PI Coresighttm, PI Notifications

Measuring

Documents

Measuring

Documents

Current State - Next Steps

Existing architecture:

- Offline analysis (RStudio or Azure Machine Learning)
- Real-time analysis (AF and Asset Analytics)
- Visualization with PI Clients and trigger in other systems
 - PI Coresighttm, PI DataLinktm
 - Opralog, SAP PM, DCS

Possible developments:

- Integrated Advanced Analytics and Operational Intelligence
 - Data transfer from PI System® to analytical tools
 - Machine Learning model implementation with direct output to PI System®

Addressing Operational & Reliability Issue from the Processing of Opportunity Crude

COMPANY and GOAL

In its 2030 strategy, MOL Group is aiming increased flexibility and quicker response to market changes with a crude basket of 50+ grades to improve EBITDA.

CHALLENGE

Alternative crude processing brings benefits, but also risks and disturbances in process.

- Benefit with increased flexibility and discounted price
- Changing feed quality can cause disturbances in the process, new corrosion mechanisms, & asset performance/reliability issues

SOLUTION

Operational Intelligence, online analytical solutions, & advanced analytics to support faster decisions.

- PI System® supported workflow initiation and management
- Real time decision support tools
- Integrated system: investigation online analysis - reaction

RESULTS

Ability to react faster, prevent or eliminate disturbances and keep the process stable with changing feed quality.

- Stable operation with changing crude quality
- Longer asset lifecycle
- Strategic goal: 33 % seaborne crude by 2030

Contact Information

Gábor MUCSINA

gmucsina@mol.hu

Process Information Expert MOL Plc.

Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Download the Conference App for OSIsoft Users Conference 2017

- · View the latest agenda and create your own
- · Meet and connect with other attendees

search OSISOFT in the app store

http://bit.ly/uc2017-app

감사합니다

谢谢

Danke

Gracias

Merci

Thank You

Köszönöm

ありがとう

Спасибо

Obrigado

"In God we trust; all others bring data."

W. E. Deming

