

High Resolution with a Purpose: Photovoltaic System Monitoring and Analysis Using the PI System

Presented by Joe Walters, Siyu Guo

E in @osisoft #OSIsoftUC ©Copyrig

© Copyright 2017 OSIsoft, LLC

High Resolution with Purpose

- Our perspective
- Photovoltaic (PV) power generation
- Levelized Cost of Energy (LCOE) is the driver
- Using the PI System for LCOE reduction
 - High resolution monitoring and analysis
 - Benefits
- Next steps
 - Partner with commercial industry

Our perspective

- US PVMC
 - US Photovoltaic Manufacturing Consortium
 - DOE funded, one of many SunShot initiatives
 - 5-year program (2012-2017), ends May 31st
 - Improve the US PV supply chain
 - Thin film track
 - c-Si track
 - Industry lead consortium
 - Work issues industry deemed important
 - University of Central Florida
 - Florida Solar Energy Center
 - State's energy research institute since 1975

@osisoft

- Led c-Si track, focused on metrology
- Advanced metrology for PV modules

PV Capacity Going Strong

- 2016 another banner year of solar capacity additions
 - Renewables > Nonrenewable
 - Solar > Wind

Note: The last two months of 2016 are based on planned reported additions and are subject to change.

(in) @ osisoft

(=)

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

4

Data source: U.S. Energy Information Administration

Levelized Cost of Energy

• Solar exponential growth due to economic competitiveness with other energy sources

- Lazard's LCOE (2016)
 - > unsubsidized
 - Capital cost
 - > O&M cost
- Influencing LCOE
 - Reduce capital cost
 - Reduce risk

OSIsoft. USERS CONFERENCE 2017

Lowers finance costs

\$125

\$81

\$72

@osisoft

\$7 \$88

\$5 \$78

Solar PV-Rooftop Residential

Solar PV-Rooftop C&I

Solar PV-Community

https://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdf

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

-5

\$13 \$138

Using the PI System for LCOE Reduction

- Reduce risk
 - > Energy degradation over time is assumed based historical data
 - Data is obtained through manual system intervention
 - Disconnect module, strings, perform field measurements

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

6

- Real-time degradation rates will provide confidence in performance trends and lifetime predictions
 - Lower risk equates to lower financing rates
 - Increased asset value for re-sale or refinance
 - Data is obtained *in situ*, no intervention with equipment

PV Plant Architecture

- Typical PV plant
 - Ten of thousands of modules
 - ~350 W each (7 A, 50 V)
 - ~3000 panels per 1 MW (DC)
 - Thousands of strings
 - 20 to 30 modules connected in series
 - 1000 V DC moving to 1500 V DC
 - Strings meet at combiner box
 - Connect to re-combiner or to inverter

Google Ear

© Copyright 2017 OSIsoft, LLC

@osisoft

#OSIsoftUC

- Inverters to Transformers
 - DC to AC conversion
 - Multiple inverters per site
- Site transmission

OSIsoft. USERS CONFERENCE 2017

Apply the PI System in PV system monitoring

System setup

- Calibrated meteorological station
 - Irradiance, temperatures, humidity, pressure, wind speed and direction, PV reference cells monitored with Campbell Scientific data logger
 - Use PI Interface Configuration Utility™, PICSILoggerNet to port data
- PV module monitoring setup
 - AC and DC parameters monitored from micro-inverter
 - Use PI Interface Configuration Utility™, PICSILoggerNet
 - In situ I-V curve monitoring using I-V tracer
 - Use PI Interface Configuration Utility[™], PI_UFL to port data
- Connect to the PI System
 - Meteorological data, inverter data and *I*-V tracer data are stored and structured in PI Server[™]

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

8

 Different tools and functions provided by the PI System are used for data processing and analysis

PV system analysis

OSIsoft. USERS CONFERENCE 2017

@osisoft #OSIsoftUC © Copyright 2017 OSIsoft, LLC 9

Basic current-voltage parameters monitoring

Solar cell current-voltage (I-V) characteristics

(E)

(in) @ osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 11

PV module performance parameters

Data structure in the PI System

ter		
: 🗉 🔶	Name	🛆 Value
T	🍼 Impp	1.64603304862976 A
	🍼 Irradiance	136.40704345703125
	🍼 Isc	1.80511498451233 A
	🍼 Isc2	3.2920660972595215
	∕ V_I	0.00584665592759848 A
T	✓ IV_V	33.0546798706055 V
T	🎺 Pmpp	44.8401641845703 W
T	PowerSquared_pwrpwr	2010.6403240992222
	🎺 PV_Temp	27.9190673828125 °C
T	🍼 Vmpp	27.2413520812988 V
	🍼 Voc	32.936939239502 V

(L) (in) @ osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 12

OSIsoft. USERS CONFERENCE 2017

Meteorological data

• Data structure in the PI System

Filter				
∕:∎≑	R Name	△ Value	6	
	Ambient_Temp1_Avg	20.89944		
	Ambient_Temp2_Avg	0		
	Ambient_Temp3_Avg	20.4847069		
	<pre> Ø DASBatteryVolt_Min </pre>	12.99		
	🍼 DASTemp	23.07		
	Ø DewPoint_Temp1_Avg	0		
	PIR1_CaseTemp_Avg	24.2307434		
	PIR1_DomeTemp_Avg	25.7120667		
	PIR1_Irrad_Corrected_Avg	403.2135		
	PIR1_Irrad_Raw_Avg	-40.25733		
	PIR2_CaseTemp_Avg	21.3771362		
	PIR2_DomeTemp_Avg	22.397583		
	PIR2_Irrad_Corrected_Avg	385.396576		
	PIR2_Irrad_Raw_Avg	-41.295826		
	PSP1_Irrad_Avg	1022.711		
	PSP1_status	1		
	PSP2_Irrad_Avg	1023.00024		
	E PSP2_status	1		
	PSP3_Irrad_Avg	0		

f c in @osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 13

Oslsoft. USERS CONFERENCE 2017

Data visualization using PI ProcessBook®

- Ambient condition data, temperature, irradiance, wind speed.
- Measured PV module performance parameters

Ambient condition

OSIsoft. USERS CONFERENCE 2017

PV module performance

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 14

Advanced power loss analysis

Real-time PV module loss analysis

- Stand alone analysis is not enough for PV modules
- Functions provided by the PI System tools have limitations in doing complicated analysis
- Python is used to combine with the PI System to perform detailed analysis

Diode model of PV device

• Based on the p-n junction nature, one-diode model can be applied to model the I-V characteristics of a solar cell

$$I(V) = j_{\text{ph}} - \underbrace{j_0}_{\text{ph}} \left\{ \exp\left[\frac{q(V+j(V)R_s)}{nkT}\right] - 1 \right\} - \frac{V+j(V)R_s}{R_{\text{sb}}}$$

- Important parameters:
 - $> R_s$: Resistive loss due to current transport
 - $> R_{\rm sh}$: Defects causing leakage current
 - \succ j_0 : Impurities of semiconductor

$I_{\rm sc}$ - $V_{\rm oc}$ curve of a PV module

• I_{sc} - V_{oc} curve is constructed of (I_{sc} , V_{oc}) points of individual PV modules measured under different illumination condition

(in) @ osisoft

(E)

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 18

OSISoft. USERS CONFERENCE 2017

Power loss analysis procedure

 I_{sc}-V_{oc} curve is constructed of (I_{sc}, V_{oc}) points of individual PV modules measured under different illumination condition

Data Processing

- Current-Voltage (I-V) data of individual PV modules
 - ➢ I-V sweep is done periodically in our PV System.
 - PI DataLink® is useful in data download and visualization

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 20

Data processing

- $I_{\rm sc}$ - $V_{\rm oc}$ data is corrected based on measured temperature
 - Python is used for data correction, but it can also be achieved by using Performance Equations or Analysis functions

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 21

Isc-Voc curve for a single PV module

Case study of a PV module

f b in [@] osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 22

One PV module in FSEC PV system

osisoft. USERS CONFERENCE 2017

Future plan

- Applying all the algorithms on the string level
- Looking for Industrial partnerships to expand methodology
- Optimize data capture frequency
- Create standard set of time-series parameters

$$\succ$$
 $R_{\rm s}$, $R_{\rm sh}$, J_0 , ...

OSIsoft. USERS CONFERENCE 2017

- Create the time-series power loss statistics
- Perform predictions using PI System future data capability

Conclusion

- Advanced PV system monitoring requires a powerful tool for data storage, analysis, and visualization
 - > the PI system meets those challenges

Asset Framework	PI ProcessBook®
PI Server™	PI System Explorer™
PI Interface Configuration Utility™	PI DataLink®

- Integration with Python provides more detailed analysis capability
- Provided example of power loss analysis with real-time degradation
- Uncovering the unknown reduces risk, reduces LCOE

Photovoltaic System Monitoring and Analysis Using the PI System

COMPANY and GOAL

Florida Solar Energy Center applied highresolution monitoring and analysis in PV system and achieved real-time degradation analysis.

CHALLENGE

High resolution monitoring of PV system requires powerful data storage and analysis method.

- Current data collection is usually obtained through manual operation
- Advanced data storage and analysis method are required by high-resolution monitoring.

SOLUTION

PI System is used for realtime PV system data storage and management.

- Meteorological data, inverter data and I-V tracer data are stored and structured in PI Server.
- Real-time power loss analysis is achieved by combining with Python.

RESULTS

LCOE, O&M reduction

- Automatic data processing instead of stand-alone analysis performed manually.
- Automatic fault detection and degradation analysis based on the power loss calculation.

OSIsoft. USERS CONFERENCE 2017

f 🕒 in @osisoft

oft #OSIsoftUC

© Copyright 2017 OSIsoft, LLC

Contact Information

Joseph Walters

jwalters@fsec.ucf.edu

Program Director Florida Solar Energy Center University of Central Florida

Siyu Guo

Siyu@uspvmc.org

Post Doc – Research Scientist Florida Solar Energy Center University of Central Florida

Questions

Please wait for the **microphone** before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

@osisoft

Download the Conference App for OSIsoft Users Conference 2017

App Store

Google Pla

© Copyright 2017 OSIsoft, LLC 27

- View the latest agenda and create your own
- Meet and connect with other attendees

search OSISOFT in the app store

http://bit.ly/uc2017-app

#OSIsoftUC

Thank you for your attention !

