

ERCOT's Use of the OSIsoft Ecosystem for the New Reliability Risk Operator Desk

Presented by Aaron Rosenthal - Operations Engineer Grid Applications Development

Agenda

- Quick ERCOT overview
- New Reliability Risk Desk Overview
- Using OSIsoft to Meet Those Needs
- Benefits Recap
- Next Steps
- Questions

About ERCOT

Introduction – ERCOT

- Electric Reliability Council of Texas, Inc.
 - ISO/RTO for the state of Texas
- Four primary responsibilities
 - System reliability planning and operations
 - Wholesale market settlement for electricity production and delivery
 - Retail switching process for customer choice
 - Open access to transmission

ERCOT Quick Facts

- 90% of Texas load
 - 24 million customers
 - 75% of load is retail-choice
- 77,000+ MW expected generation
- Record peak load of 71,197 MW
 - August 11, 2016
- 17,000+ MW of installed wind capacity
 Most of any state in the nation
- 500+ MW of installed solar capacity

-5

OSIsoft at ERCOT

- Started using PI System in ~2004
- 530,000+ PI Tags
 - ~303,000 from SCADA
 - ~123,000 for Performance Equations
 - ~61,000 for AF analyses
- 2TB total used archive space
 - ~2GB daily archive size

f c in @osisoft

#OSIsoftUC ©

© Copyright 2017 OSIsoft, LLC 7

Past Trend - Increasing Wind

(f)

Upcoming Trend - Increasing Solar

osisoft. USERS CONFERENCE 2017

f c in @osisoft #OSIsoftUC © Copyright 2017 OSIsoft, LLC 9

New Reliability Risk Desk

Increasing amounts of <u>renewable generation</u> requires ERCOT to assess and manage <u>more-infrequent</u> yet potentially <u>severe risks</u>.

- 8th operating desk in the ERCOT control room
- Key areas of focus:
 - Real-time performance of wind and solar generators
 - Monitoring and identifying forecast error risk

New Desk = New Requirements

- New Calculations
 - Example: Curtailed MWs for Wind and Solar Units

(t)

(in) @osisoft

#OSIsoftUC

11

© Copyright 2017 OSIsoft, LLC

New Desk = New Requirements

- New Wind Regions
 - Different geographical regions behave differently.
 - Need aggregated values for each region.

#OSIsoftUC

12

© Copyright 2017 OSIsoft, LLC

@osisoft

New Desk = New Requirements

- New Data Sources
 - Forecast and Future Operating Plans do not exist in EMS.

@osisoft

(**E)**(in)

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC 13

OSIsoft. USERS CONFERENCE 2017

OSIIsoft. USERS CONFERENCE 2017

AF Model – Starting Point

- Started building AF model in 2015
- Fully modeled representation of Solar and Wind Units

in @osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

-15

OSIsoft. USERS CONFERENCE 2017

AF Analytics – New Calculations

USERS CONFERENCE 2017

- Generating unit assets define complex analyses
- Results are written to PI System and rolled up for highlevel view
- Example: Curtailed generation calculates how much wind/solar was "held back" due to a constraint on the grid

Name	Expression	Value	Output Attribute
Curtailment	Max('HSL' - 'MW', 0)	0	Map
LastSBBH	PrevVal('SBBH', '*-5m')	1	Map
LastRST	PrevVal('RST', '*-5m')	ON	Map
WasCurtailed	Not BadVal(LastSBBH) And Not BadVal(LastRST) And LastSBBH And LastRST <> "ONTEST"	True	Map
IsCurtailed	Not BadVal('SBBH') And Not BadVal('RST') And 'SBBH' and 'RST' <> "ONTEST"	True	Map
Result	If IsCurtailed Or WasCurtailed Then Curtailment Else 0	0	CurtailedMW

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

Modeling Wind Regions with AF

- Texas counties grouped into "wind regions" with common meteorological characteristics
- Use of AF element references to organize hierarchical structure

Rollup Analyses with AF

- Use of element categories to target specific assets
- Rollup analyses to county and wind levels for key quantities:
 - Wind/solar generation and HSL
 - Curtailed wind/solar generation
 - Number of turbines on

Rollup Analyses with OLEDB Queries

USERS CONFERENCE 2017

- OLEDB queries used for more complicated rollups
- Useful when history/backfilling is not needed
- Allows multi-level rollups with less "clutter"

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

Web-based Displays

- OSIsoft PI Web API opens up access to AF data to be used in web-based displays
- Best-of-breed technologies used, including...
 - Angular
 - Highcharts
 - Node.js

Benefits of Web-based Displays

- Centralized location facilitates deployment strategy
- More powerful presentation-layer capabilities than PI ProcessBook by using HTML/CSS

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

22

- (More flexibility than allowed by PI ProcessBook)
- (More dynamic UI environment)
- Highly extensible with JavaScript

USERS CONFERENCE 2017

Wind/Solar Curtailment Monitoring

Visualizing Wind Regions

- Wind generation by county displayed on map
- Allows operator to quickly visualize where most wind generation is concentrated

#OSIsoftUC

24

© Copyright 2017 OSIsoft, LLC

@osisoft

Wind/Solar Curtailment Details

Wind/Solar Forecast Monitoring

Wind/Solar Forecast Details

Future Plans

- Implement Future Data using RDBMS
- Transition PI ProcessBook Displays to Web-Based

@osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

28

• Mobile Dashboards

Questions

Please wait for the **microphone** before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Download the Conference App for OSIsoft Users Conference 2017

App Store

Google Pla

- View the latest agenda and create your own
- · Meet and connect with other attendees

search OSISOFT in the app store

http://bit.ly/uc2017-app

(b) (in) @ osisoft

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

Current Records (As of 2/8/2017)

Peak Demand Record: 71,110 megawatts (MW)

• Aug. 11, 2016, 4-5 p.m.

Weekend Record: 66,921 MW

• Sunday, Aug. 7, 2016, 5-6 p.m.

Winter Peak Record: 59,650 MW

• Jan. 6, 2017, 6-7 p.m.

Wind Generation Records (instantaneous)

• Output: 16,022 MW

OSIsoft. USERS CONFERENCE 2017

- Dec. 25, 2016, 10:40 a.m.
- Penetration (load served): 48.28%
 - March 23, 2016, 1:10 a.m.
 - Total Load = 27,245 MW

Recent Monthly Peak Demand Records

2017

• January: 59,650 MW* (Jan. 6, 6-7 p.m.)

2016

 August: 71,110 MW (All-time record)

@osisoft

- September: 66,949 MW (Sept. 19, 4-5 p.m.)
- October: 59,864 MW (Oct. 5, 4-5 p.m.)
- December: 57,924 MW* (Dec. 19, 7-8 a.m.) (New winter record at the time; surpassed Jan. 6, 2017)

2015

• July: 67,650 MW (July 30, 4-5 p.m.)

* Totals subject to change based on final settlement

#OSIsoftUC

© Copyright 2017 OSIsoft, LLC

Benefits of Asset Framework (AF)

- Ability to group wind units by geographical regions
 - Allows hierarchical rollups, e.g. MW output by county
 - Defines structure for laying out displays, e.g. all wind units on the Coast
- Provides new insight from existing data series
 - Fast prototyping
 - New calculations, e.g. curtailed wind generation
- Integrating outside data sources, e.g. Oracle databases
- PI Web API allows us to develop web-based displays