Better Data Quality for Better Data Science with the PI System

Brandon Perry

Symptom: losing money to shutdowns

Cause: unexpected equipment failure

Project: predict equipment failure

Symptom: many false alerts

Cause: poor data accuracy

Project: improve the data accuracy

Symptom: many false diagnoses

Cause: poor data interpretation

Data Quality

some common dimensions:

-Accuracy

-Believability

-Completeness

-Ease of understanding

-Relevancy

-Timeliness

-Accessibility

Fermenter 13 bottom heater acsbrew.BREWERY.B2_CL_C1_FVI Bottom TIC OUT [Control Value]

Raw data for 1h

Time	Value
8/13/18 18:03	2.77
8/13/18 18:08	3.28
8/13/18 18:13	3.00
8/13/18 18:18	0.28
8/13/18 18:23	18.78
8/13/18 18:28	1.23
8/13/18 18:33	4.79
8/13/18 18:38	12.10
8/13/18 18:43	33.90
8/13/18 18:48	11.84
8/13/18 18:53	13.42
8/13/18 18:58	0.00

Averages every 10 minutes

Time	Average (PI)	Average (Excel)	% Error
18:00	2.95	3.02	3
18:10	2.36	1.64	-30
18:20	9.58	10.00	4
18:30	7.73	8.44	9
18:40	22.45	22.87	2
18:50	7.89	6.71	-15

#PIWorld

PIWorld BARCELONA 2018

©2018 OSIsoft, LLC

Data Quality

I. Why it matters

Impact

II. What it is

Understanding

III. What to do

Action

II. What it is

Time Series "Samples" Time Sequence "Signal"

(t, v)

SISOFI.

PIWORID BARCELONA 2018

PIWorld ©2018 OSIsoft, LLC

Interpolation

9/5/18 21:31 991.42

	А	В	С	С
2	9/5/18 21:22	990.34		
3	9/5/18 21:26	994.02		
4	9/5/18 21:35	989.96		
5	9/5/18 21:36	SOURCE OFFLINE		
6	9/5/18 22:01	986.92		
_	0/5/40.33.03	007.54		

Questionable

this value might not be useful

☑ Substituted

this value was modified

✓ Annotated

this value has a note attached

Complex Quality value: 42.0

quality: Uncertain - Last Usable Value

Quality as reported by some sources

Metadata

Well-sampled

Under-sampled

Well-sampled, compressed

Reproduced here under fair use for critique of this work PIWorld BARCELONA 2018 #PIWorld

Raw

Time	Value A	Value B
8/21/18 17:50		78.751
8/21/18 17:52	33.899	
8/21/18 17:53		94.162
8/21/18 18:07		79.858
8/21/18 18:16	37.222	79.656
8/21/18 18:27	68.398	
8/21/18 18:30		97.063
8/21/18 18:41		35.461
8/21/18 18:50		42.960
8/21/18 19:00	72.527	

Interpolated together

Time	Value A	Value B
8/21/18 17:50	82.663	78.751
8/21/18 17:52	33.899	86.657
8/21/18 17:53	12.679	94.162
8/21/18 18:07	56.308	79.858
8/21/18 18:16	37.222	79.656
8/21/18 18:27	68.398	64.163
8/21/18 18:30	79.185	97.063
8/21/18 18:41	18.486	35.461
8/21/18 18:50	8.759	42.960
8/21/18 19:00	72.527	74.234

What is the average value in this window?

Naïve

e.g. AVG() in SQL or Excel

$$\frac{A+B+C+\cdots}{n} = \boxed{-0.13}$$

there are certainly times where event weighting is the right thing, but this choice should be made deliberatel

Time-weighted

$$\frac{\overline{[A} \cdot \Delta T_{[A} + \overline{AB} \cdot \Delta T_{AB} + \cdots}{\Delta T} = \boxed{4.38}$$

What is the average value in this window?

Naïve

e.g. AVG() in SQL or Excel

$$\frac{A+B+C+\cdots}{n} = \boxed{-0.13}$$

there are certainly times where event weighting is the right thing, but this choice should be made deliberate

Time-weighted

$$\frac{\overline{[A} \cdot \Delta T_{[A} + \overline{AB} \cdot \Delta T_{AB} + \cdots}{\Delta T} = \boxed{4.38}$$

III. What to do

Adjust your data collection settings

Add sensor metadata to your PI Assets

T	Regenerant Temperature	172 <u>.9</u> ℉
T	Process maximum	220 ℉
T	Process minumum	150 ℉
T	Sensor accuracy	2 delta °F
T	Sensor maximum	480 ℉
T	Sensor minimum	0 ℉
T	Sensor type	Type K Thermocouple

Cleanse your raw data right in the PI System so others can benefit too

PI Integrators

PI SQL

PI Web API

Interpolate when you need regularity

10-minute : samples •

4	Α	В	С	D	Е	F	G	н	I	J	K
1				Santa	Clara Sub	station	Transfo	ormer			
2					Feeder	Line Vol	ltage				
3	ı	PI	nase A			hase B		Р	hase C		
4		In	Out	Delta	In	Out	Delta	In	Out	Delta	
5	9/5/18 23:00	988.84	129.03	0.34	1028.00	122.36	0.40	1000.60	127.96	0.18	
6	9/5/18 22:50	1032.25	130.71	0.10	978.92	130.39	0.49	1023.66	119.19	0.59	
7	9/5/18 22:40	1045.66	123.44	0.47	1043.15	122.06	0.55	953.55	118.79	0.03	
8	9/5/18 22:30	987.51	123.36	0.00	976.46	128.42	0.40	950.32	120.04	0.08	
9	9/5/18 22:20	986.92	127.33	0.25	1027.40	128.31	0.01	960.32	129.08	0.56	
10	9/5/18 22:10	1018.62	128.71	0.09	1026.48	124.79	0.23	1032.61	129.70	0.04	
11	9/5/18 22:00	1029.66	123.74	0.32	998.33	122.17	0.17	1037.60	131.02	0.08	
12	9/5/18 21:50	989.96	124.25	0.03	977.33	124.61	0.16	1048.14	126.98	0.25	
13	9/5/18 21:40	994.02	120.92	0.22	996.89	124.66	0.00	1015.86	122.23	0.31	
14	9/5/18 21:30	967.34	128.68	0.48	997.28	121.06	0.24	977.83	129.73	0.46	
15	9/5/18 21:20	1029.46	121.18	0.50	968.50	130.60	0.58	1037.84	121.45	0.55	

Use time-weighted aggregates when appropriate, and set a minimum quality

Aggregate on phases or states

and now...

Contact Information

Brandon Perry
Research
OSIsoft
bperry@osisoft.com

Data Quality at TransCanada

Keary Rogers & Ionuţ Buse

TransCanada Corporation (TSX/NYSE: TRP)

One of North America's Largest Natural Gas Pipeline Networks

- Operate 91,900 km (57,100 mi.) of pipelines
- Transport ~25 per cent of continental demand
- Over 650 Bcf of gas storage capacity

One of Canada's Largest Private Sector Power Generators

- 11 power facilities, approximately 6,100 MW
- Diversified portfolio including wind, nuclear and natural gas

Premier Liquids Pipeline System

- 4,900 km (3,000 mi.)
- Keystone System transports ~20 per cent of Western Canadian exports
- Safely delivered more than 1.9 billion barrels of Canadian oil to U.S. markets

North America Natural Gas Demand Growth

City Centers

Universities

Schools

Our Children

Medical Facilities

Elderly

Why Does Real-Time Data Quality Matter?

Fleet Optimization

Condition Monitoring

Early Detection of Functional Degradation

acity hit			Hours	Driver Speed			TROS	Heat Rate%	Failed Start %	Start Attempts	Gill serviced Starts	Sizes Starts	Faults Furning	Hours /Start	Total Run Hrs
Vexandria - Unit 903			27 h												
Mexandria - Unit 904	•	Run	346		28 meth	82 %									
Vexandria - Unit 907	H	Run	80 h		137 moth	84 %								454 h	454 h
Mexandria - Unit 908	H	Ran	31 h		99 meth										365 h
Artemas - Unit 1			76 h		15 moth									46 h	
Sanner - Unit 603		Run	54 h		14 meth	99 %									
Sanner - Unit 604			55 h		34 mch	19.%	98%							57 h	454 h
Sanner - Unit 605			7h		54 mcfh										369 h
Banner - Unit 606			6h			99 %								56 h	450 h
Sanner - Unit 608	H		15 h		172 mdh										
Soldman - Unit 1			940 h												
Soldman - Unit 4			104 h												
Seredo - Unit 1	•		111 h												
	+		32 h			98.95		0%0							
Seredo - Unit 4	•		9h			98 %								26 h	26 h
Dementsville - Unit 201			34 h			103 %				26				23 h	
Domentoville - Unit 202			62 h			100 %	100 %			54					195 h
Dementsville - Unit 208			53 h			101 %									105 h
Diementoville - Unit 204	•		21 h			104% \varTheta	104% 9	96.5		14				19 h	131 h
Dementsville - Unit 205		Run	2h			101 %	101%	97%		17	4	13			149 h
Dementsville - Unit 206			84 h			102 %	102%	99 %		10				63 h	438 h
sentoville - Unit 207			58 h		36 mgHi										615 h

Asset Performance & Efficiency

OpsVision

Expose Data to Operations Personnel

How Real-time Data Impacts Our Business?

Functional degradation starts occurring on the gas producer bearing drain packing

Abnormal Oil
Tank Pressure
increase is
flagged through
SQC anomaly
detection

Reliability Analyst performs data analysis & communicates to Maintenance Lead

Unit is taken offline planned, controlled & safely. The drain packing is replaced

Unit is back in service. Failure was mitigated without any customer impact

Real-time Data | Technology & People

24/7

Real-time Data | Process Automation & Control **Data Quality** Check PI Asset **Framework Network** Communication 1.488 **Support Documentation** Core **Dashboard** Reliability Statistics & Context **Real-time Ensuring Data Completeness & Timeliness**

Systems

Real-time Data | Process Management Dashboard

Real-time Data Quality | Failure Scenarios

Unexpected system state is written to the current value

Stale

Data has stopped updating and the last timestamp is older than exception max

✓ Accomplished

Flat Line

Data is updating but same value gets written Identified by leveraging the asset structure

√ Accomplished

Data is not collected at adequate granularity to be used in statistical and machine learning methods In-depth data analysis is required to address this issue

✓ Future Work

Contact Information

Keary Rogers

Manager, Core Reliability

TransCanada US Gas Operations
keary_rogers@transcanada.com

Ionuţ Buse
Team Leader, Enterprise Analytics
TransCanada US Gas Operations
ionut_buse@transcanada.com

Questions?

Please wait for the **microphone**

State your name & company

Please rate this session in the mobile app!

DZIĘKUJĘ CI S NGIYABONGA D TEŞEKKÜR EDERIM YY (IE TERIMA KASIH

DANKON

KEA LEBOHA

KÖSZÖNÖM PAKMET CI3FE

БЛАГОДАРЯ

ТИ БЛАГОДАРАМ

TAK DANKE \$\frac{1}{2}\$

MERCI

HATUR NUHUN

OSIsoft.

MULŢUMESC

ESKERRIK ASKO

ХВАЛА ВАМ

ĎAKUJEM

MATUR NUWUN

TEŞEKKÜR EDERIM

ДЗЯКУЙ ΕΥΧΑΡΙΣΤΩ GRATIAS TIBI **DANK JE**

AČIŪ SALAMAT MAHALO IĀ 'OE TAKK SKAL DU HA

GRAZZI PAKKA PÉR

PAXMAT CAFA

CẨM ƠN BẠN

ありがとうございました
SIPAS JI WERE TERIMA KASIH
UA TSAUG RAU KOJ
ТИ БЛАГОДАРАМ
СИПОС

