PI System AUSTRIA

Christian Bugl Head of Site Engineering 24.9-27.9.2018

#PIWorld ©2018 OSIsoft, LLC

Agenda

- Shire Austria short introduction of the company
- PI advantages
- Integrating PI System for engineering products
- Different users internal process with interfaces like PDTS, Validation, Engineering, IT,...
- TCC Technical Control Center
- Data & Facts system architecture, tag count, data storage
- Use cases/Business impacts

SHIRE in Vienna

established in Great Britain 1986 24.000 employees 40 products on market In 65+ countries Austria 3.500 employees 21 Mio. product units per year Shipped in 100 countries

World Wide

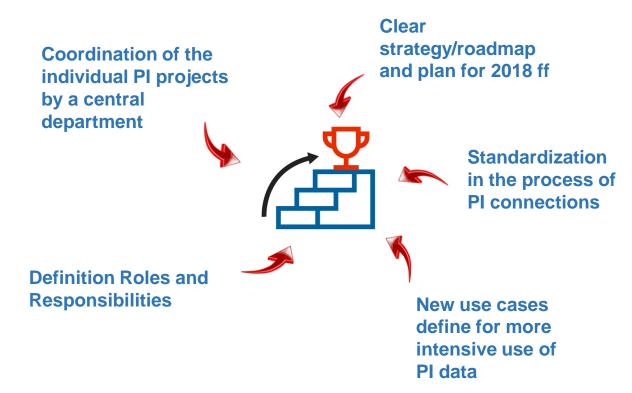
2,5 Mio. liters of Plasma per Year

PI System Coverage Status in Vienna

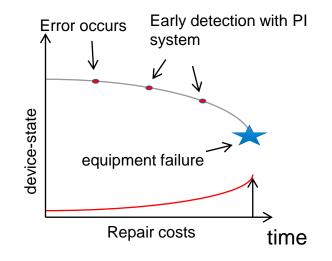
- ~ 14000Tags ~ 450 Units
- ~ 6 Keyuser

- ~ 11000 Tags
- ~ 130 Units
- ~ 7 Keyuser

- ~ 5000Tags ~ 120 Units
- ~ 9 Keyuser


~ 21000 Tags ~ 350 Units ~ 11 Keyuser

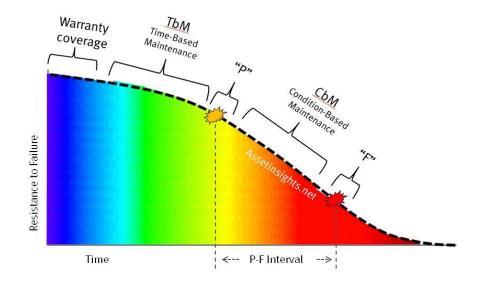
	BG		120		167	
45T	1865 kW	157	150 kW	IST	480 kW	
TAG		74G	1250 kWh	TAG	3615 kWh	
MONAT	455 MWh	MONAT	31 MWh	MONAT	82 MWh	
JAHR	10708 MWh	JAHR	787 MWh	JAHR	1924 MWh	
1 100		1 131		LA24		in
173						
900 kW	IST	2000 kW	IST	1904 kW	157	490 kW
900 kW 3100 kWh	IST TAG	2000 kW 21704 kWh	<u>IST</u> TAG	1904 kW 27896 kWh	IST TAG	
						5126 kW


Strategic approach of implementation

BARCELONA 2018

Benefits of the PI System

- Data retrievable on every PC (browser) and data extraction possible at any time (.xls, .xcf)
- Live Overview of the process and the plants (batch data, quantities, ...) and the correlating support systems to recognize relationships and dependencies
- Monitoring / optimization of plant performance
- Direct notification of the users: Generation of event-controlled eMails with a typical system behavior for the information of the responsible departments
- Comparable records between sites, performance monitoring, dashboarding, investment estimation
- Early signal detection to avoid equipment malfunctions and associated corrective maintenance activities



Condition based Maintenance via PI System

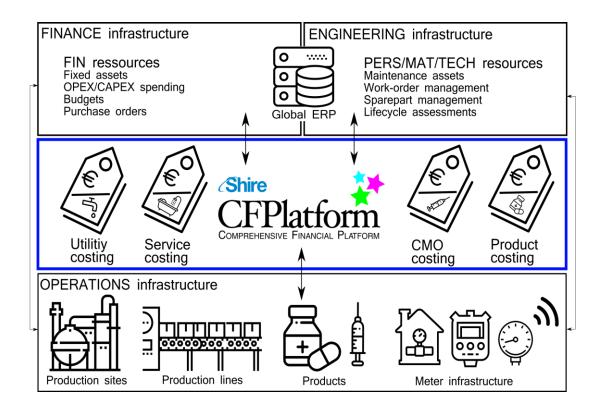
Maintenance depending on the plant condition by measuring physical parameters

Application examples:

- vibration analysis Cyclic maintenance of engines transmission maintenance
- differential pressure Preventive exchange of filters
- switching cycle Exchange of valve membranes
- **Operating hours** Maintenance of separators

Integrating PI System for engineering products

Business summary


 Information of indispensable advantage for justifying investments

Utility costing

 Metering utility flows to estimate cost per unit of utilities delivered

Product costing

- CMO
- Engineering contribution to product conversion costs

Coordination of the individual PI projects by a central department

- Connection of new and existing systems to the PI system (URS creation, project management & management, data verification, participation in validation ...)
- Definition of the PI standards
- Dashboards displays, notifications and event frames
- Preparation of the data for the end user
- User Meetings
- System Maintenance

Different users - different requirements

Quality

- Robust data for sharing
- For root cause analysis in deviation cases
- **Trend analysis**

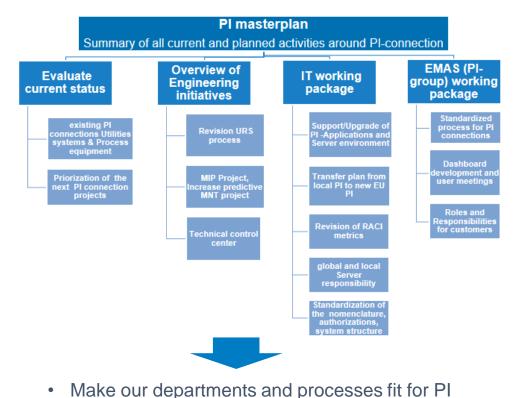
PDTS

- Process performance management
- Relationships between individual parameters
- Multivariate process monitoring

TCC (Technical Control Center)

- Fast response to malfunctions
- **Evaluation of Cross-Divisional Systems**
- Prioritization of simultaneous malfunctions and failures

Manufacturing


- Batches comparable
- Manufacturing Performance monitoring
- noticeable problem tracking and intervention monitoring

Engineering

- Monitoring / optimization of plant performance
- Create energy models
- Predictive maintenance
- Data basis for potential future **CAPEX** investments

Clear strategy and plan for 2018 ff

 Local governance board Focuses on important products / customer requirements

PIWORID BARCELONA 2018

Standardization in the process of PI System connections

URS (User Requirements Standards) Integration of PI standards

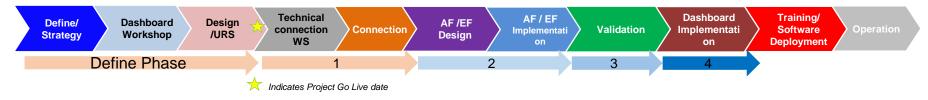
- Technical description about the process of a PI connection
- SOP's "USE OF THE PI HISTORIAN"

Global SLA (Service Level Agreement) between the system owner and the user of the data

- Troubleshooting
- Response times

PI User Manual

- Description of the system
- Server environment
- PI lifecycle phases


		At Dawners+ Tant Sources
Harw Data	Validator Pachages	
the Technology	sche Anforderun	ngen an Pi Historian (v1.0) ⊕ mmme
(PAnson)	¢	. · · · × . ×
		10 W W
	1	Gettungsbereich Diese Anforderungen gelten für alle neu zu erichtenden Datenanbindungen an das Jelistiona – Pi System Veis Billen Wein und Orth. Erweiterungen dess Anforderungen beseit zich auf Modetaltedforderungen an der Datenarbendung. Alweichungen von diesen Anforderungen eind mit dem Auftraggeber basistimmen und, sofern nicht bentes im URS durch dem AS modifikart, in den Design-Dokumenten erspitzt aufzulteten und vor Umsetzung Beitungeber
	2	Zielsetzung
		Gewährteistung einer einheitlichen Anbindungs-, Visualisierungs-, Archivierungsphilosophie für Prozesswerte alter Anlagen im PI System
	3	Abkürzungen / Verwendete Begriffe / Definitionen

Array of a Pi master plan for the site Vienna pl LifeCycle Phase Mark Mark

Global PI Data Historian SERVICE LEVEL AGREEMENT

The PI System Development stages

Physical connection

Plausibility check done Correct network parameter Connection to controller established Data not yet visible in Pl Stage 1

Setup PI assets using standardized templates

Data visible in AF/Coresight No Display available Not usable for quality-relevant statements

Stage 2

Approved validation of tags /AF/EF

Number of tags is measurable


Stage 3

Combines parameters to enable early signal detection

Dashboard available Usable for quality-relevant statements

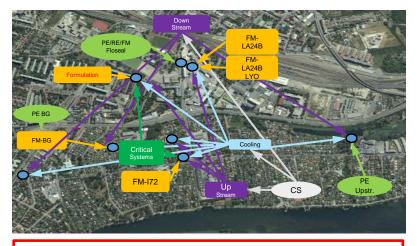
Stage 4

The PI System Lifecycle phases

Softworld Barcelona 2018

Definition Roles and Responsibilities

- Various task packages at a PI connection assigned to the responsible departments – RACI
- PI Key User as a interface in the various user departments


		Function IT (Global PI IT)	Shared Services IT (DC)	Plant IT	ENG	¥alidati on local	¥alidation global	Qualiy global	Quality local	PDTS	MFG	OsiSoft	VIPRO	Ezternal
Define / Stra	Definition of where is a Pi connection needed (global Strategg)	A/B	с		с					в	с			
	Definition of Assets, Attributes , Events (using/creation of templates)	A/B			R	в			c	R	в			
Dashboard WS	ldentify which parameters must be displayed e.g. pressure, temperature	I			A/B					с	с			с
SHU	Create URS	с		с	A/R	с			с	с	с			
Technical connection WS	Creation of tags for import to PI				A/B									с
	Identify how must the technical connection be made e.g. connection via S7 controller	I		с	A/B	с					с			с
Conne	Physical connection can be done by internally or by external supplier			с	A/B						1			в
	AF/EF global Configuration/Design using standardized tem	A/B		С	R		С	С					B	R
ш.Б	AF/EF local Configuration/Design using standardized temp	С		С	A/B								B	B
AF/EF Design	PI Ad-hoc displays creation	B		R	A/R	R			R	R	R			
	Pl Displays development	A		с	в		с	с		в	в	с	В	В
AF/EF Implemen tation	AF/EF global Implementation	A/B		с	в		с	с					в	в
	AF/EF local Implementation Validation of connection from collector pc to production	с		с	A/R								в	в
Validation	equip.	1		с	A/B	B			B		в			с
Valid	Validation of connection! dataflow from prod. Equip. to global PI (incl taglist)	R		с	в		A	в		B	в		R	в
ard bo	Creation of PI notifications	1			A/B					1	с			с
ő í	Validation				A	В					с			
622	Training of End Users on Client tools				A/B									
5 2 3	Training of Key Users on AF/EF	A/B			С							С		
<u>n 9</u>	Installation and Deployment of Pi Client Tools			в	A									
	AF /EF Support & Maintenance ? Data Collector Interface Support (Help File needs to be	A/R			1					1	1		С	С
	developed)			в	A							с		с
	Changes/Updates to existing tag configurations				B	С			С		A			
	Changes/Updates to existing notifications				B						A			
	LCM - local PI System (Collector PCs)	1		B	A	С			С					
	Monitoring of the PI Services	A/B		I	1					L		L	I	
	Monitoring of the PI Tags (Health Monitoring)					1								

Implementation of a Technical Control Center Past vs current situation

To be able to operate a technical control center with justifiable manpower requirements, it is necessary to establish a group of employees with a technical knowledge of all technical systems and a system which is able to monitor that all

Past State:

To support all systems we needed: 14 Stand-by Teams 2 Teams on 24/7 duty

Current:

With the TCC we monitor **all technical systems** (utilities, quality-related supply systems and production systems)

SINGH BARCELONA 2018

Core task of the TCC

Managed	systems
---------	---------

Production systems

Building maintenance supply systems

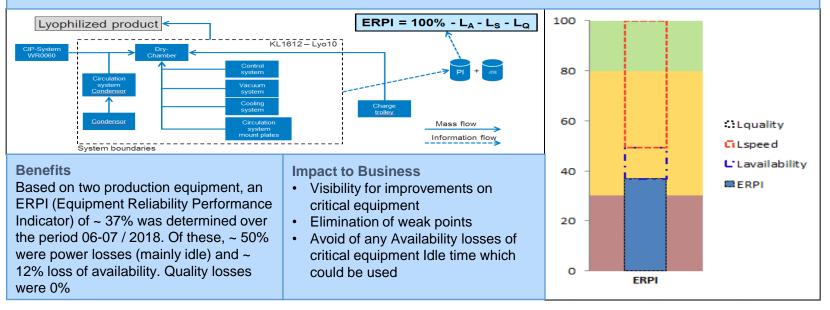
Building engineering

Main duties

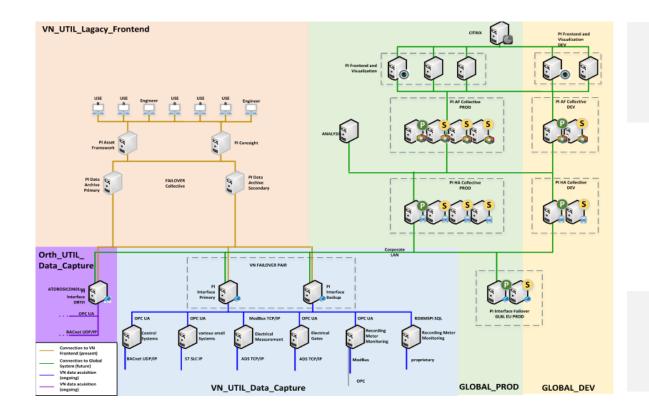
To react to alarms and abnormal operating states and restore required operating and system conditions (in coordination with customer requirements)

Carry out critical commissioning and decommissioning

Decide on approvals for system shutdowns due to maintenance and repair purposes



Needs and economical based control of systems

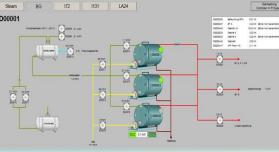

Carry out preventive maintenance measurements outside production hours

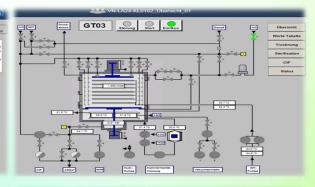
Introduction of a Reliability KPI

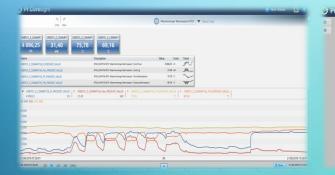
Reliability of critical equipment and utilities is utterly important for economical equipment usage and strategic business success. In industrial practice many varying approaches for calculating reliability KPI exist

PI System architecture

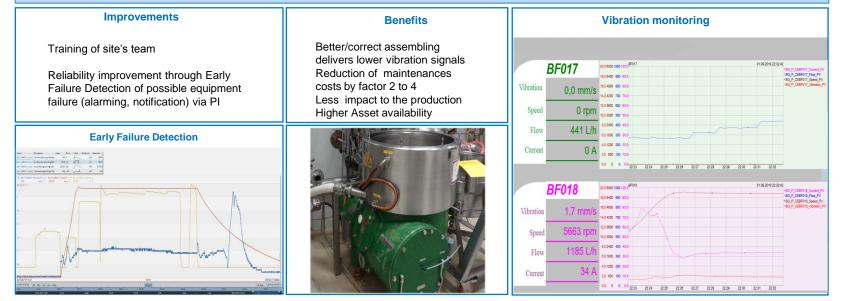
End 2017 ~ 26.000 PI Tags ~ 700 units ~ 1 GB Data/week


Current ~ 61.000 PI Tags ~ 1.000 units ~ 3 GB Data/week


End 2019 ~ 70.000 PI Tags ~ 1.100 units ~ 5 GB Data/week


Use cases define for more intensive use of PI System data

1131

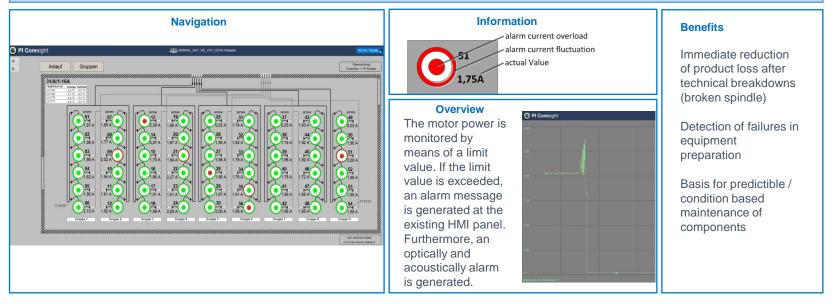


Predictive maintenance via PI system

In the BG, 2 Westfalia centrifuges are currently in use. The maintenance team did not have enough knowledge to perform a proper training to the Site team. Short maintenance intervals were necessary to prevent production downtime.

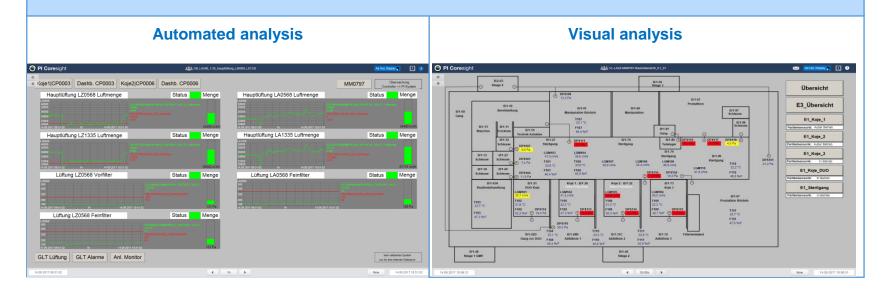
Impact :

- · Not proper assembling creates higher vibrations
- Availability of the centrifuges far below 100%
- Unplanned repairing's impacted the production
- Maintenance cost increased


Sisoft. BARCELONA 2018

Power Measurement Centrifuges I131

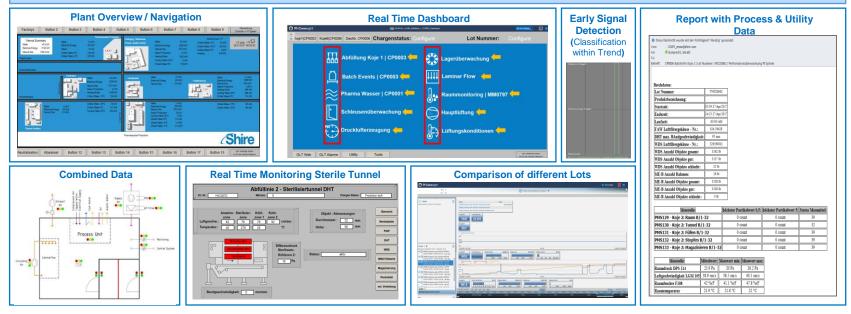
Implementation of a solution to gather data of the Centrifuges


At **1131**, **54 CEPA** centrifuges are in use. Recently, **hollow-shaft fractures** have been increasingly found in centrifuges. For error analysis, a monitoring of the centrifuges was implemented.

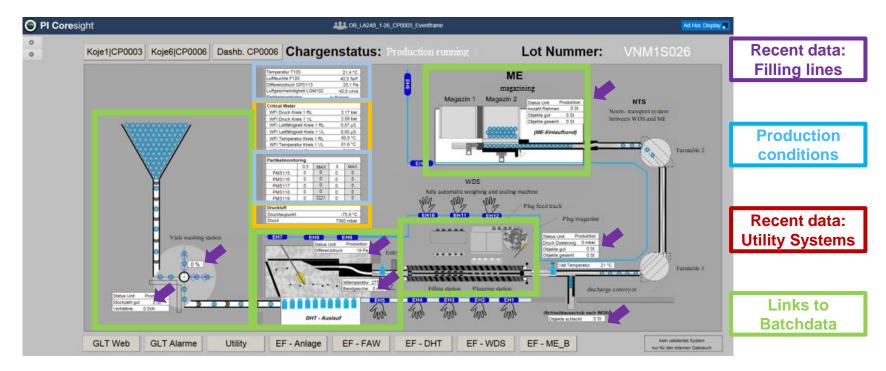
The **motor power** of the drive motor of each centrifuge is detected and evaluated. If an error occurs, the staff will be informed. At the same time, the data is archived in the PI system. Based on this PI data, the process is evaluated and compared with other influences.

Power Failure Detection

In the event of a power failure of the entire Plant the impact on the differential pressures in the clean rooms could be very quickly reconstructed by analyzing the PI dashboard . (Example: "sterile tunnel LA24 / B")



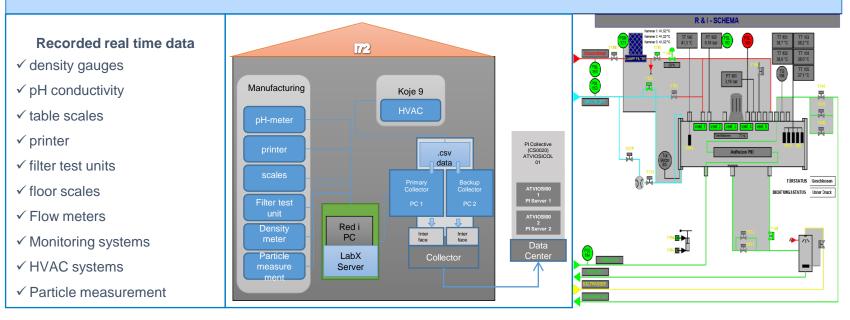
SISOFT. BARCELONA 2018


Vienna PI-System - Pharma production

Implementation of an IT solution to gather all relevant data of the filling process and all related supporting systems

- · Combined process & utility data visualization on one single platform to the user
- Real time monitoring & long term data archive
- Verifying if the process or/and supply systems are in a normal range, if not...generating warnings or alarms (vs deviation degree) to inform responsible departments
- Automatically generate reports when the filling process has finished possible product release (future)

Vienna PI-System - Pharma production Dashboard – Batch Events



Sisoft. BARCELONA 2018

Vienna I72 Pharma production

Implementation of an IT solution to gather all relevant data of the filling line and all related supporting systems

- Combined process & utility data visualization on one single platform to the user
- Real time monitoring & long term data archive

Sisoft. BARCELONA 2018

Vienna I72 Pharma production

Benefits

- fast accessibility of data for root cause analyses
- saving resources e.g. for collecting data
- Online Identification of possible deviations or malfunctions
- A fast way to capture the dimension of deviation in the first evaluation in less time – e.g. no unnecessary on hold status for products or unnecessary delay of production plan
- Fast data and alarm availability
- **Deviations avoidance** due to implantation of significant evaluation points
- **Continuous documentation** of the whole life cycle process of Albumin at Building I72

Our Journey with the PI System

Energy savings Water Electricity Steam

. . .

Data driven decisions

Replacing of waste producer Installation of Energy recovery Devices

Our Key for Success

. . .

- One clear PI Strategy
- Defined PI Governance Board
- PI Key and End User defined
- PI data owner defined
- PI Projects and Implementation standardized
- Validation strategy (GxP, non GxP definition) available
- PI part of any URS for new equipment

BARCELONA 2018

Alarm notifications

reduce of Breakdowns Predictive maintenance

. . .

Root cause analyses Reduce of Deviations Increase of Product Output

Data based decisions

Electronic batch release

Reducing paper loads

•••

- interfaces with other data management systems available
- PI templates
- PI business cases published

. . .

• Communication, Communication, Communication, Communication

#PIWorld ©2018 OSIsoft, LLC

Questions?

Please rate this session in the mobile app!

Please wait for the **microphone**

State your name & company

