Enabling Business Transformation with the PI System: The DCP 2.0 Journey

Tauna Rignall – Director, Integrated Collaboration Center

Forward-Looking Statements

Under the Private Securities Litigation Act of 1995

This document may contain or incorporate by reference forward-looking statements regarding DCP Midstream, LP (the "Partnership" or "DCP") and its affiliates, including projections, estimates, forecasts, plans and objectives. Although management believes that expectations reflected in such forward-looking statements are reasonable, no assurance can be given that such expectations will prove to be correct. In addition, these statements are subject to certain risks, uncertainties and other assumptions that are difficult to predict and may be beyond our control. If one or more of these risks or uncertainties materialize, or if underlying assumptions prove incorrect, the Partnership's actual results may vary materially from what management anticipated, estimated, projected or expected.

The key risk factors that may have a direct bearing on the Partnership's results of operations and financial condition are described in detail in the Partnership's periodic reports most recently filed with the Securities and Exchange Commission, including its most recent Forms 10-Q and 10-K. Investors are encouraged to consider closely the disclosures and risk factors contained in the Partnership's annual and quarterly reports filed from time to time with the Securities and Exchange Commission. The Partnership undertakes no obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise except as required by applicable securities laws. Information contained in this document speaks only as of the date hereof, is unaudited, and is subject to change.

DCP Midstream - Who We Are

- We provide the full range of midstream services
 - Gas gathering, compression, treating, and processing
 - Natural gas liquid (NGL) production and fractionation
 - Condensate recovery
 - Transportation, storage and sale of residue gas, NGL and propane

Fast Facts

- 61 Gas Plants
- 57,000 Miles of gathering PL
- >400 Booster Stations
- 1400+ Compression Units
- 1M+ gathering system HP
- >42,000 meters
 - 4,500 miles NGL PL
- One of the largest U.S. natural gas processing companies
- One of the largest U.S. producers of NGLs
- One of the largest NGL pipeline operators

Through our DCP 2020 strategic framework, DCP is committed to being sustainable in any market environment

Who are DCP's customers?

SISOFIC BARCELONA 2018

Recognition of **OT Data & Information** as **Strategic Asset**

process and technology

solutions conceived, built and delivered

Delivering Disruptive & Transformative Business Value

- \$20MM-25MM investment in 2017
- ~1 year Payback!
- Projected incremental \$20MM EBITDA in 2018
- Continuing to drive EBITDA
 impact 2020+

Driving stronger margins, lower costs, better reliability

EMBEDDING A CULTURE OF INNOVATION IN OUR DNA

Developing Digital Solutions: Accomplishments

SISOFI. PIWORID BARCELONA 2018

Data Foundations - Embracing the Challenge

We need a deep understanding of our operational data in context, transformed into information and knowledge, but:

- Our existing data architecture was focused on process control and operations, with analytics and reporting almost an after-thought
- There was no centralized and normalized set of operational data across
 the company
- Multiple versions of the "same data" emailed in spreadsheets to multiple parties

To get our operational data house in order, we deployed an enterprise-wide PI System

Why **OSIsoft**, the **PI System**, and the **EA?**

Key Considerations:

- Performance, Scalability, Reliability, and Security (cyber & data)
- Integration with other systems
- Rapid deployment
- Keeping control systems (DCS and SCADA) focused on control
- Keeping up with ever evolving technological changes
- Empowerment & innovation
- Self sufficiency

- Strong OSIsoft and the PI System <u>Value</u> proposition:
 - Enterprise OT infrastructure agnostic, scalability, performance, reliability
 - Analytics platform
 - Cyber/data security & governance
 - World class support Account manager, NOC, Tech Support, Company
 - PI System community large E&P customer base

To rapidly attain DCP2020 Strategy, Vision, & Value, we chose an Enterprise Agreement

Our Approach to Rapid Implementation & Value

1. Hybrid PI AF Jump Start & SME Training with EA KO Meeting:

- ✓ Naming conventions Element, category, attributes, expression syntax, etc.
- ✓ PLAF structure, architecture & integration with SCADA/DCS/IT Systems
- ✓ PLAF governance SMEs guide, product team implement, PLTeam provides standardization & QA
- 2. Leveraged Enterprise Agreement COE, EPM, rapid stand up of PI System
- 3. Rapid, agile method, heavy use of PI AF/PI Vision Templates
 - Deployment team worked on 2 parallel tracks: data connections/tag creation and product development
- 4. Formation of in-house PI Team augmented with OSIsoft COE and SIs
- 5. EA Governance Parallel Leadership teams, Executive Sponsors, KPIs, quarterly leadership team meetings

PI System Enterprise Data Flow

- Plant DCS (OPC, RDBMS, FXBAIS)
- Wonderware SCADA (OPC, RDBMS)
- Allegro Market Prices (RDBMS)
- Windrock Spotlight (Connector for UFL)
- VMGSim (OPC bidirectional data flow)
- ACI Compression Modeling (custom utility – bidirectional data flow)
- Current local temperature (custom utility)
- FlowCal Volumes and GC (RDBMS)
- **SkyBitz** remote tank monitoring (UFL)
- ALS lab tests of oil samples (UFL)
- **SolarWinds** network equipment status (Connector for UFL)
- FieldSquared Operator rounds (custom utility and UFL)

DCP Midstream PI System Development Building the Tools for Reliability

File	Search	View	Go	Tools	Help	
Elemen	ts					
ģ 👩	DCP Mids	tream				
ļģ	🗊 Gati	nering an	d Proce	ssing		
	ġ 🇊	Mid Cont	inent			
	Ē.	🗇 Cer	itral Ok	lahoma		
	<u> </u>	· 🗇 Libe	ral			
				pair Shop		
	÷.	🕤 Nor	thwest	Oklahoma		
	÷	🗇 Sou	th Panł	nandle		
			thern C	Oklahoma		
	ġ 🧊	North				
	<u> </u>	- 🗇 DJ I	Basin			
	Ē.	· 🗇 Mid	nigan			
	Ē.	🗇 Nor	th Repa	air Shop A	rea	
	1 1	· 🗇 Pice		asin		
	<u> </u>	🗇 Wy	oming			
		Permian				
	1 1	· 🗇 Goli		Fullerton		
	I T	🗇 Ozo				
				epair Shop		
	· -	_		New Mexi	co	
		🗇 Tria	d			
	Ġ 河					
	T	🗇 Ark				
	T	🗇 Ban				
	-	🗇 Cer		xas		
		Gul				
	T	🕤 Sou				
	<u>+</u>	🛛 🗊 Sou	th Texa	as		

PI Asset Framework (PI AF)

Develop Hierarchy of Gas Plant, Compressor Station, Pipeline Assets

Organization of Data Into Useful Sets

Templates for Scalability

Translation/Integration With Other Business Systems

<complex-block>

 Prime

 Prime<

PI Vision

Dashboards for Operational Monitoring

Multiple Sources of Data Combined Into Single View

Pair Analytics w/Real-Time Values

Single Point Access Across Organization

From: DNotifications@dcpmidstream.com [mailto:PINotifications@dcpmidstream.com] Sent: Monday, October 09, 2017 2:40 AM To: Babb, Joshua D Subject: Engine Cylinder Temp Deviation on C193 at Wells Ranch (2017-10-09 02:35) generated a new notification event. Event: Engine Cylinder Temp Deviation on C193 at Wells Ranch (2017-10-09 02:35) Name: Engine Cylinder Health Server: WINOSIT3T01 Database: DCP Midstream/Cathering and Processing\North\DJ Basin\Weld County Super\Weld Gathering\Wells Ranch\C193/Engine Severity: None Severity: None Severity: None Severity: None Severity: None Severity: None Severity: Rome Severity:

Cynnaer	remperature at Notification (°F)	Offset (°F)
1 L	1337.30004882813	0
1 R	1339	0
2 L	1349.19995117188	0
2 R	1350.30004882813	0
3 L	1356	0
3 R	1340.69995117188	0
4 L	1346.5	0
4 R	1354.90002441406	0
5 L	2498	-1200
5 R	1342	0
6 L	839.200012207031	75
6 R	1315.69995117188	0

PI Alerts & PI Notification

24/7 Monitoring & Communication of Anomalies

Failure Detection, Efficiency Monitoring, Work Mgmt.

Improve Operational Awareness

Eliminate "Digging" for Issues

SISOFIC BARCELONA 2018

Business Transformation In Action: Operations of the Future - Now

• People, Process & Technology

 The PI System and PI AF underpins the ICC and associated apps & solutions

 Energy Lab rapidly develops digital solutions using PI System data and infrastructure as key technology stack component

Integrated Collaboration Center (ICC) the operations of the future

- ICC ties multiple data sources, including SCADA, engineering data, contracts, real-time market prices, financial systems, KPIs and daily theoretical margins
- Facilitates real-time decisions... driving asset optimization throughout the full business value chain
- 30 of 61 plants currently on the ICC platform... remaining by the end of 2018

Business Solutions

1111151117:1111

- Energy Lab rapidly develops digital solutions, including apps, to automate, streamline and digitize work streams
- Deployed 12 solutions to optimize workflow, automate processes, improve compliance, reduce costs and solve employee and customer pain points
- Now accelerating additional solutions throughout operations, commercial and corporate functions

Culturally transforming the way we work through process optimization and digitization

ICC Rapid Standup & Transition

Q2

ICC moved to 23rd Floor in Denver HQ

Construction Begins for new ICC

2017

Q1

6 ICC Coordinators driving integrated decisions

Q3

1st Full Regional Rollout

2018

35 Total Gas Plants supported by the ICC, includes 6 frac plants

QA

1st ICC Coordinator hired

Initial ICC begins 4 Gas Plants on-boarded in ICC

EA Kick Off Meeting & PI AF Jump start/SME training Rapid Rollout of PI System Infrastructure 02 2019 02 Province 2

Begin Super System Integration

Began Integrated Engineering support

First of Month (FOM) Targeting Alignment coordination begins from ICC

Begin Gas Control Standup

 \cap

#PIWorld ©2018 OSIsoft, LLC

World BARCELONA 2018

The Integrated Collaboration Center (ICC) Business Transformation In Action: Not just Operations

Integrated Landing Page to Navigate Gas Routing Portal is Company Overview and Path to all Tools

Vision								🕂 New Display		E\jjpelli
Gas Routing Portal								Ad Hoc Dis	play 🗍	•
Gas Routing Portal						L User	Guide @ Support			
GIS Solutions			Utilities	3						
GIS Application 🔡 GIS Da	ashboard 🕅 GIS Map		E Boos	ster Status 🔲 Plant Screens 🕠 Per		🗱 Interface Health				
Permian		Mid Continent		North		South				
Inlet Flow Rate (MMscfd) 740	Summary	Inlet Flow Rate (MMscfd) 1,163		Inlet Flow Rate (MMscfd) 1,346		Inlet Flow Rate (MMscfd) 1,250				
SENM Artesia Eunice Linam Ranch	284 MMscfd ② Status III	SCOK Chitwood Fox Plant Kingfisher	393 MMscfd Status - North	DJ Basin	988 MMscfd	Arklatex △ East Texas	477 MMscfd			
▲ Zia II Goldsmith-Fullerton	Efficiency 149 MMscfd	 △ Mustang Plant ▲ Okarche ▲ Sholem 	Status - South	Mewbourn Mewbourn 3 OConnor Platteville		Barnett Shale	19 MMsctd			
Goldsmith	Efficiency	Northwest Oklahoma Cimarron Mooreland	124 MMsctd Status	 △ Roggen △ Spindle 		Gulf Coast △ Mobile Bay	137 MMscfd			
Triad Pegasus Rawhide	131 MMscfd	Liberal	Efficiency 533 MMscfd	Michigan △ Antrim Plant △ Turtle Lake Plant	199 MMscfd	 △ Beaumont △ Port Arthur Plant 				
Roberts Ranch	Efficiency	\triangle Ladder Creek Plant \triangle National Helium				South Central Texas △ Eagle	617 MMscfd			
Ozona △ Ozona Gas	176 MMscfd	△ Sherhan		Piceance Basin △ Anderson Gulch Plant	159 MMscfd	△ Giddings△ Goliad				
 △ Sonora Plant △ Southwest Ozona Gas 		South Panhandle	113 MMscfd			 △ Wilcox △ Gulf Plains Main 				
					8h					1:57:5:

SISTER PIWORID BARCELONA 2018

Real Time Operational & Financial Targets

Using Operational, Process Simulation and Financial Data to Optimize Plant Performance

	PLANT KPIs	
DAILY MARGIN	\$ 26,947	\$ 26,802
MARGIN Per MSCF	0.38 \$/Mscf	0.38 \$/Mscf
NAMEPLATE CAPACIT	Y 300 MMscfd	I
INLET RATE	71 MMscfd	
INLET PRESSURE	908 psig	
ETHANE RECOVERY	99 %	96 %
PROPANE RECOVERY	r 100 %	100 %

CHALLENGE

- Plant operation is dependent on many factors
 - Feed Composition,
 - Operating Mode
 - Plant and Equipment Design
- Optimized operating conditions were not readily available in real time
- Incremental value of operating at optimal conditions was unknown

PIWORID BARCELONA 2018

SOLUTION

- Linking process simulations to PI data & layers of analytics to provide operating targets
- Financial info linked to current operating and theoretical data provides current and potential value
- Real time optimized operating and financial data provide definitive targets for operators

- More accurate, consistent and reliable plant operations provides significant margin improvement
- Quantifying impact of sub-optimal operation allows effective prioritization of plant maintenance and small capital projects
- Visibility to plant capability, current status and associated value is fundamental to ICC operation

Tracking Plant Downtime and Causes

Event Frames, Notifications and Reason Codes to Improve Plant Reliability

Event Frame Template: Plant Down									•	
Add V									Evaluate	
Name Expression								True for Sever	ity	
Start triggers										
StartTrigger1 '.\Inlet Liquids Handling Unit Plant Inlet Tot	tal Flow'	< 'Plant Uptim	ne Minimum	Flow'				1 hours Warr	ning 🔻 🖣	
		vision						e	New Display	ONE\DAVinciguerra ?
	Θ	<u>Plant Down</u>							Ad Hoc Dis	splay
	Ч а			All	Unacknowle Regardless of ev	dged Ever	nts			
		Event Name 🍸 🛛 A	isset 🍸	Start Time	End Time	Duration	Reason	Acknowledged By	Acknowledgement	
Scheduling: C Event-Triggered C Periodic	¢	Mobile Bay Plant is do wn	MOBILE BAY	4/9/2018 9:36:00 AM	In Progress	2h 22m	Ø		Acknowledge	
Period: 00h 05m 00s, Offset: 00h 01m 00s Configure										
		_			Acknowledg Within Time Pe	eriod Selected				
		Event Name 🍸 A				Duration	Reason	^	Acknowledgement	
		Eunice Plant is down	EUNICE	3/23/2018 7:06:00 PM	4/6/2018 2:39:52 PM	13d 19h	Other Communication	ONE\jjpelli	Acknowledged	+
		Cimarron Plant is down	CIMARRON	4/1/2018 1:56:00 PM	4/3/2018 9:36:00 AM	1d 19h	Unplanned Field 4	ONE\LWilliams	Acknowledged	-
		Giddings Plant is down	GIDDINGS	4/2/2018 12:16:00 PM	4/2/2018 3:46:00 PM	3h 30m	Other Communication	Ø ONE\jjpelli	Acknowledged	بيًّ.
		4/2/2018 11:58:32 AM	1			7 d			Now	4/9/2018 11:58:32 AM
SIsoft.										

PIWorld BARCELONA 2018

#PIWorld ©2018 OSIsoft, LLC

High Pressure Field Status Violations of Set Points are Notes for Easy Identification

	^{∞n} Vision									
Ð	SENM Status Board v2.2								Ad Hoc Display	
\$	ம் Home				@ G	S Application 🔡 GIS Dashbo	ard 🔲 GIS Map 📅 Wellhe	ad Dashboard 📄 🖹 User Guide 🛛 🖓 Support		
k	SENM Status Board							View SENM Efficiency Metrics		
M	ARTESIA 0	Kristina	0 Illinois Camp) Winchester 0	Penroc 0	Burton Flats 0	Rambo 1	Legend		
	Inlet Flow Rate (MMscfd) 53.1 60.6	7,014.1 795 Mscfd psig		1,635.5 797 Mscfd psig	1,620.7 827 Mscfd psig	6,476.5 815 Mscfd psig	5,147.9 844 Mscfd psig	No exceptions Warning exceptions		
	33. I to hit Nom Residue Flow Rate (MMBtu/d)	Kathleen	0 Jackson	North Jackson 1	Carbon Valley 2	Shadow 0	Dagger Draw 1	Critical exceptions Missing data or not fully functional		
	33,638 -3,617 vs Nom	4,065.8 788	3 7,964.8 798	7,474.9 831	4,054.9 816	9,584.9 Bad	5,167.8 825			
		Mscfd psig	Mscfd psig	Mscfd psig	Mscfd psig	Mscfd psig	Mscfd psig			
	ZIA II 1	Cedar Canyon	0 Nash Draw	North Station 0	Big Eddy 1	Carrasco 2	South Carlsbad 2	Black River 1		
	Inlet Flow Rate (MMscfd)	-1.0 -1 Mscfd psig	Bad 524 Mscfd psig	2,127.4 574 Mscfd psig	Calc Failed 539 Mscfd psig	0.0 538 Mscfd psig	3,396.6 0 Mscfd psig	2,064.3 259 Mscfd psig		
	U to hit Nom	Hat Mesa	0 GMAX	CDU 0						
	Residue Flow Rate (MMBtu/d) -124,000	10,382.0 487 Mscfd psig		23,143.0 Mscfd						
	0 -124,000 vs Nom	West Turkey Track			Fitz 0	Magnum 0				
		14,338.1 51	5 14,042.7 480	1,496.7 397	5,188.3 585	13,680.2 571				
	LINAM RANCH 0	Mscfd psig		Mscfd psig	Mscfd psig	Mscfd psig	; }			
	Inlet Flow Rate (MMscfd)	529 0.0 83		RJ 1	Loco Hills 0 7,129.5 438	Grayburg 0 5,539.2 636	Triple C 1 3,226.8 553	Parkway 2 3,523.9 Bad		
	to hit Nom	Mscfd psig		Mscfd psig	Mscfd psig	Mscfd psig	Mscfd psig	Mscfd psig		
	Residue Flow Rate (MMBtu/d) 105,888 12,846 vs Nom	Lynch	1 Bell Lake	Thistle 3	Dobbs 0	Lovington 1	Bootleg 0	Double X 2		
	vs Nom	7,064.5 290 Mscfd psig		0.0 2 Mscfd psig	7,104.9 315 Mscfd psig	2,985.4 0 Mscfd psig	3,450.5 356 Mscfd psig	2,082.7 Bad Mscfd psig		
	FUNICE 0	Loving	2 Oil Center) Monument 0	Golf Course 1					
	Iniet Flow Rate (MMscfd)	839.9 4	10,827.3 209	3,925.2 232	4,420.6 0					
	83.7 66.5 to hit Nom	Mscfd psig	Mscfd psig	Mscfd psig	Mscfd psig					
	Residue Flow Rate (MMBtu/d) 59,120 8,913 vs Nom	Amanda 0.0 0	3 Berry 11,024.7 666	Alisha 0 1,825.0 607	Sand Dunes 0 6,732.6 613	Cal-Mon 0 2,937.2 Bad	Pure Gold 28 0 0.0			
	JJ, IZU vs Nom	Mscfd psig		Mscfd psig	Mscfd psig	Z,937.Z Dau Mscfd psig	Mscfd			
	9/9/2018 6:00:51 AM					8h			Now 9/9/2	2018 2:00:51

PIWorld BARCELONA 2018

IIOT Enabled Advance Machinery Analytics

Spotlight Site Installation = 2 hrs IIOT sensory inputs that augments existing SCADA/PLC inputs in the PI System

From Data to specialized Analytics (Cloud based)

Integrate with the PI System for Complete Cause and Effect Analytics via PI AF and PI Analytics Embed Windrock specialized analytics displays into PI Vision

SISOFIC BARCELONA 2018

#PIWorld ©2018 OSIsoft, LLC

Data & Trends for Condition Based Maintenance PI Trends & PI Analytics to Maximize Component Life & Value

Case Study: Real-time Trending and Immediate Notification to Monitor and Respond to Equipment Condition

Sent: M To: Bab Subject	21Notifications@dcpmidstream.com [maill tonday, October 09, 2017 2:40 AM b, Joshua D t: Engine Cylinder Temp Deviation on C1! ton event.		
Name: Server: Databa Start T Target Gatheri Severit Send T	Engine Cylinder Temp Deviation on Engine Cylinder Health WINOSIT3101 see: DCP Midstream Imer 109/2017 235.00 AM Mountai DCP Midstream/Gathering and Proc ng Wells Ranch(C193/Engine y: None Imer 109/2017 2:40:06 AM Mountai reference the table below for Cylinder	n Daylight T essing∖North n Daylight T	ime (GMT-06:00:00) DJ Basin\Weld County Super\Weld ime (GMT-06:00:00)
Cylind	ler Temperature at Notification (°F) Offset (°F	8
1 L	1337.30004882813	0	Ĩ
1 R	1339	0]
2 L.	1349.19995117188	0]
2 R	1350.30004882813	0]
3 L	1356	0]
3 R	1340.69995117188	0]
4 L	1346.5	0]

-1200

839.20001220703 1315.69995117188

CHALLENGE

- Historically used a control systembased monitoring (i.e. alarms and shut downs on small set of parameters)
- Limited advanced warning capability

BARCELONA 2018

SOLUTION

- Compression Health Monitoring Team Developed Standardized Tools and Analyses using Operational Data to Monitor Equipment & Improve Reliability
- PI Vision & Notifications to Trend + Flag Abnormal Operating Conditions
- Groups use PI to expand + customize monitoring beyond initial "centralized" tools

- More quickly identify and troubleshoot issues
- Reduce Frequency of Equipment Failures
 and associated downtime
- Simple first steps toward condition-based monitoring

Real-Time Compression Optimization Using PI AF & First Principles Models to Predict Compressor Operations

Case Study: Real-time Compressor Optimization using PI Data and First Principles Models

CHALLENGE

- Historically, we run compressor performance curves during design and then periodically to confirm proper performance
- Changes in gas volume, composition, field pressures can significantly change the optimal operating point

SOLUTION

- Compression Health Monitoring Team runs first principle models using real time PI data. Model output is used to define optimal compressor settings for current operation.
- PI Vision displays provides operating conditions based on optimal load step

- More quickly identify optimal compressor operating parameters
- Reduced operating costs
- Improved equipment reliability

Linking Operational to Geographic Data

Using Operational and Geospatial Data to Optimize Gas Flow and Gathering Performance

CHALLENGE

- DCP's assets are spread over a wide area, requiring lots of driving miles for operations and maintenance
- With its long distances and extensive interconnections, our gathering system operations must consider geography of our assets

SOLUTION

 Linking operating data with geospatial wellhead and gathering system information will allow rapid understanding of issues and responses to normal and upset conditions.

- Optimal gas routing
- Increased volumes
- Greater reliability
- Fewer miles driven

What is next.....

- People
 - Continue to integrate supporting groups into the ICC; Engineering, Finance, Commercial

Process

- Continue to develop new communication processes between Customers, Operations, Commercial, Finance, and ICC
- Standardize workflow processes across all business units

Technology

- Real time, dynamic hydraulic models in all high pressure systems
- Continued expansion of commercial data integration

PIWORID BARCELONA 2018

Enabling Business Transformation with the PI System

Access to quality, timely, and contextualized data is fundamental to enabling DCP Midstream's Business Transformation and focus on empowering innovation and proactive data based decision making

COMPANY AND GOAL

DCP Midstream provides a broad array of midstream services from the well head to market and wanted to use **data and information as a strategic asset** to enable a Business Transformation to deliver differentiated customer satisfaction, safety, & performance.

CHALLENGE

Disparate data from multiple operational and financial sources inhibiting ability to make timely, integrated business decisions

- Multiple data sources
- Lack of tag and asset naming stds
- Low level of collaboration
- Average asset reliability and margin performance

SOLUTION

Selected the PI System as a strategic enterprise OT infrastructure with an EA to underpin DCP2.0 Business Transformation and ICC

- Implemented multi-tiered PI System enterprise architecture in a rapid, agile method in 10 months
- Focus on PI AF-based OT data structure – abstraction, normalization, and context
- Enabled Business Transformation and Integrated Collaboration Center (ICC)

RESULTS

Saved \$20MM-\$25MM in EBITDA benefit in 2017 from improved gas plant operation and ICC coordination

DCP 2020

Operationa Excellence

RELIABILITY

- On track for additional \$25MM in EBITDA in 2018
- Reduced O&M costs & growth momentum from new projects
- More proactive/predictive vs
 reactive...a culture of innovation
- Improved customer service, satisfaction and differentiation

Questions?

Please wait for the **microphone**

State your name & company

Please remember to...

Complete the online survey for this session

DOWNLOAD THE MOBILE APP

Rate sessions and provide feedbackMeet and connect with other attendees

Join the conversation and SHARE what you saw #osisoft #piworld

SISOFIC BARCELONA 2018