Growing on Smart Data
Siemens Gamesa Renewable Energy Today

- **87 GW** Installed Global Capacity
- **25k** Employees
- **11 €B** Annual Revenue
- **11.5 GW** Order Entry
- **23.2 €B** Order Book
- True global, modern and scalable footprint
- Advanced digital capabilities
- Portfolio covering all requirements

1. End of June 2018 (Q3 FY18)
2. End of FY'17
Siemens Gamesa Renewable Energy Today
Three business units with strong market position

Onshore
- **74 GW** installed in 75 countries.
- **9.7 GW** promoted in 14 countries.
- The technology partner of choice for onshore wind power projects.

Offshore
- **11.4 GW** installed all over the world since 1991.
- The most experienced offshore wind company with the most reliable product portfolio in the market.

Service
- **55.4 GW** under service and maintenance.
- Helping customers achieve their business objectives by ensuring that turbines work at peak efficiency throughout their life cycle.
fGamesa WindOne® Project - 2011

Company Challenges
- Reduce costs
- Increase benefits
- Keep customers in focus
- Unique repository for all the company
- Extracting more value from existing assets
- Knowledge tools for managing underperformance

Project Challenges
- Huge amount of information
- Change the way maintenance was done
- Thousands of assets in remote locations
- Personnel in many different countries & cultures
fGamesa WindOne® Project

- Thousands of Wind Turbines in remote locations
- Billions of data generated

- Real Time
 - Monitor & Operate

- SGRE Providing O&M Services

- Analysis
 - Continuous improvement
Milestones

2012
- WINDONE® DEPLOYED
 Assets RT Monitoring Tool
- PI SYSTEM DEPLOYED
 Starts archiving data

2012
- NATIVE TOOLS
 Process Book & Datalink

2013
- WINDONE® REPORTS
 Ad-Hoc Application

2013
- AUTOMATED ANALYSIS
 Matlab, R & Python scripts
- WEATHER FORECASTING
 Site ad-hoc models

2014
- ROC CONTROL
 Alerts for Specific Conditions
- WINDONE® AVAILABILITY
 EBA calculation

2015
- AF ANALYSIS
 Complex Analysis in Real Time
- ALARMS TO WINDONE®
 Bidirectional integration

2015
- 2015
- Expand Use

2016
- ADDING CONTEXT
 Refining & clustering

2017
- 2017
- Real Time Analysis

2017
- MODELS GROWTH
 Today

2018
- Store & Report

Real Time Analysis

Milestones

Older DDBB

Real Time Analysis

Expand Use

06
Facts about our PI System

>900
Wind Farms connected to WindOne®

>19k
Wind Turbines Integrated

3.2 MM
Active Tags with Real Time Acquisition

90k
Running Analysis

400
Direct Users

>2000
Indirect Users

Data from wind turbines, wind farms, SCADAs, regulators, met masts & substations

6 Different applications using PI Data

* Figures as of September 2018.
General Architecture

- **Multi-OEM**
 - Gamesa
 - oOEM

- **Collector & Gateway**
 - Windone®

- **Central Systems**
 - Asset Framework Database
 - Time Series Database
 - Alarms Database

- **Enterprise Applications**
 - PI Analytics
 - Windone® Reports
 - Windone® Customers
 - Windone® Availability
 - ...

- **Users**
 - Remote Operation Center
 - Field Technicians
 - Support teams
 - General Users
Use Cases

Success Stories
Particular use cases
Several examples on how the PI System has helped the company

Same system, different solutions for different use cases:
- WindOne® Reports
- Remote operation center solutions
- Advanced analytics
WindOne® Reports Example

Challenge

- Predefined, easy-to-get and quick reports for all stake-holders within the company.
- Integrated with other company tools.

Solution

- Combine PI System data with other data sources to provide standard reports executed under the same assumptions.
- PI SDK, PI AF SDK.

Details

- > 30 reports and subreports.
- Assets health, behaviour and configuration, fleet analysis, wind farm reports.

Outputs

- Used by Support Teams, Field Technicians and many others.
- O&M personnel able to execute reports at “design engineers” level.
WindOne® Reports Example

Challenge
- Predefined, easy-to-get and quick reports for all stake-holders within the company.
- Integrated with other company tools.

Solution
- Combine PI System data with other data sources to provide standard reports executed under the same assumptions.
- PI SDK, PI AF SDK.

Details
- > 30 reports and subreports.
- Assets health, behaviour and configuration, fleet analysis, wind farm reports.

Outputs
- Used by Support Teams, Field Technicians and many others.
- O&M personnel able to execute reports at “design engineers” level.
WindOne® Reports Example

Challenge
- Predefined, easy-to-get and quick reports for all stake-holders within the company.
- Integrated with other company tools.

Solution
- Combine PI System data with other data sources to provide standard reports executed under the same assumptions.
- PI SDK, PI AF SDK.

Details
- > 30 reports and subreports.
- Assets health, behaviour and configuration, fleet analysis, wind farm reports.

Outputs
- Used by Support Teams, Field Technicians and many others.
- O&M personnel able to execute reports at “design engineers” level.
WindOne® Reports
WindOne® Reports Example

Challenge

- Predefined, easy-to-get and quick reports for all stake-holders within the company.
- Integrated with other company tools.

Solution

- Combine PI System data with other data sources to provide standard reports executed under the same assumptions.
- PI SDK, PI AF SDK.

Details

- > 30 reports and subreports.
- Assets health, behaviour and configuration, fleet analysis, wind farm reports.

Outputs

- Used by Support Teams, Field Technicians and many others.
- O&M personnel able to execute reports at "design engineers" level.
Remote Operation Center Example

Challenge

- Grid Operator requirements.
- Operate & maintain Wind Farms, apply setpoints.
- Internal requirements.

Solution

- Wind Farms, Wind Turbines, Scadas & Regulators modelled in PI AF.
- Expression analysis & Event Frames used.

Details

- ROC operators get a notification either if there is near gets out of range (+security margin) or the quality indicator gets too low.

Outputs

- ROC operators check the situation at the Wind farm and then decide the best course of action.
Remote Operation Center Example

Challenge

- Grid Operator requirements.
- Operate & maintain Wind Farms, apply setpoints.
- Internal requirements.

Solution

- Wind Farms, Wind Turbines, Scadas & Regulators modelled in PI AF.
- Expression analysis & Event Frames used.

Details

- ROC operators get a notification either if there is near gets out of range (+security margin) or the quality indicator gets too low.

Outputs

- ROC operators check the situation at the Wind farm and then decide the best course of action.
Regulator Power Factor Control
Remote Operation Center Example

Challenge
- Grid Operator requirements.
- Operate & maintain Wind Farms, apply setpoints.
- Internal requirements.

Solution
- Wind Farms, Wind Turbines, Scadas & Regulators modelled in PI AF.
- Expression analysis & Event Frames used.

Details
- ROC operators get a notification either if there is near gets out of range (+security margin) or the quality indicator gets too low.

Outputs
- ROC operators check the situation at the Wind farm and then decide the best course of action.
Regulator Power Factor Control

Notification is closed

Power Factor Error detected in Regulator XXXX RV1

Windfarm Name: Wind Farm YYYY
Client Name: Client AAA
Grid Node: Grid Node 1
SCADA: SCADA XXXX

Alarm Type: COSPHERRORALLZONES
Start Time: 15/07/2018 16:00:00
End Time: 15/07/2018 17:00:00

* Alarm Note:
-cosphierror:Power factor of measured cos phi differs more than X% with cos phi setpoint when active power is over 50% of nominal power.

https://cosphierroralert.org/alarms?

Target Cos Phi: 0.966
Measured Cos Phi: 0.985

Cos Phi Error: 1 %
Active Power: 1024.883 kW
Reactive Power: -1780.579 kVar
Voltage: 20.855 V
Regulator Status: 100
Remote Operation Center Example

Challenge
- Grid Operator requirements.
- Operate & maintain Wind Farms, apply setpoints.
- Internal requirements.

Solution
- Wind Farms, Wind Turbines, Scadas & Regulators modelled in PI AF.
- Expression analysis & Event Frames used.

Details
- ROC operators get a notification either if there is near gets out of range (+security margin) or the quality indicator gets too low.

Outputs
- ROC operators check the situation at the Wind farm and then decide the best course of action.
Regulator Power Factor Control

Reactive Regulator State

- Coa PHI read by regulator at SET or at n 0.05 TEB
- Cos PHI target endpoint of reactive regulator
- Regulation objective 0.055 TEB

Regulation Quality

- 57.143 %

ROC Z1 MIN ACTIVE PWR

- 6.300 kW

ROC Z2 MIN ACTIVE PWR

- 3.100 kW

Active power read by regulator at SET

- 74.967 TEB

Voltage read by regulator at SET or at f

- 30.4 TEB

#PIWorld ©2018 OSIsoft, LLC
Advanced Analytics Example

Challenge
- Assets health & performance monitoring.
- Detect / Predict hidden faults.
- Improve maintenance.
- Avoid major incidents.

Solution
- Expression analysis & event frames analyzing RT WTG signals.
- Raising alarms if conditions trigger model thresholds.

Details
- Definition & Parametrization.
- Check asset condition vs model.
- Alarm included in Alarms DDBB

Outputs
- O&M People & site supervisors to carry out tasks depending on alarm code.
Advanced Analytics Example

Challenge
- Assets health & performance monitoring.
- Detect / Predict hidden faults.
- Improve maintenance.
- Avoid major incidents.

Solution
- Expression analysis & event frames analyzing RT WTG signals.
- Raising alarms if conditions trigger model thresholds.

Details
- Definition & Parametrization.
- Check asset condition vs model.
- Alarm included in Alarms DDBB

Outputs
- O&M People & site supervisors to carry out tasks depending on alarm code.
Wind Farm’s 3σ quality check
Advanced Analytics Example

Challenge
- Assets health & performance monitoring.
- Detect / Predict hidden faults.
- Improve maintenance.
- Avoid major incidents.

Solution
- Expression analysis & event frames analyzing RT WTG signals.
- Raising alarms if conditions trigger model thresholds.

Details
- Definition & Parametrization.
- Check asset condition vs model.
- Alarm included in Alarms DDBB

Outputs
- O&M People & site supervisors to carry out tasks depending on alarm code.
Wind Farm’s 3σ quality check
Advanced Analytics Example

Challenge
- Assets health & performance monitoring.
- Detect / Predict hidden faults.
- Improve maintenance.
- Avoid major incidents.

Solution
- Expression analysis & event frames analyzing RT WTG signals.
- Raising alarms if conditions trigger model thresholds.

Details
- Definition & Parametrization.
- Check asset condition vs model.
- Alarm included in Alarms DDBB

Outputs
- O&M People & site supervisors to carry out tasks depending on alarm code.
Wind Farm’s 3σ quality check

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Description</th>
<th>Status</th>
<th>Windfarm</th>
<th>Device Code</th>
<th>Date On</th>
<th>Date Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>83035</td>
<td>GAAS - Gearbox oil temp: high difference with Wind Farm avg.</td>
<td></td>
<td>WF012</td>
<td>WTG P</td>
<td>20-08-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2018</td>
<td>01:00:00</td>
</tr>
</tbody>
</table>

List of Variables

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83033</td>
<td>GAAS - Generator slippings temp: high difference with Wind Farm avg.</td>
</tr>
<tr>
<td>83035</td>
<td>GAAS - Gearbox oil temp: high difference with Wind Farm avg.</td>
</tr>
<tr>
<td>83036</td>
<td>GAAS - Generator NDE bearing temp: high difference with Wind Farm avg.</td>
</tr>
<tr>
<td>83037</td>
<td>GAAS - Generator DE bearing temp: high difference with Wind Farm avg.</td>
</tr>
</tbody>
</table>

#PIWorld ©2018 OSIsoft, LLC
Particular use cases
Several examples on how the PI System has helped the company

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve O&M services</td>
<td>Use PI System capabilities jointly with other enterprise systems.</td>
<td>What benefits were achieved/measured?</td>
</tr>
<tr>
<td></td>
<td>• WindOne Reports: web application.</td>
<td>• Anticipation to problems.</td>
</tr>
<tr>
<td></td>
<td>• PI EF + Notifications + Coresight for Remote Operation Center</td>
<td>• Standard reporting.</td>
</tr>
<tr>
<td></td>
<td>• PI Analysis + Alarm generation + Enterprise Systems</td>
<td>• Effective operation & maintenance of a huge fleet of WTGs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduce cost of O&M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increased performance of support teams, better time-to-solution ratio.</td>
</tr>
</tbody>
</table>

- • WindOne Reports: web application.
- • PI EF + Notifications + Coresight for Remote Operation Center
- • PI Analysis + Alarm generation + Enterprise Systems
The Future

- **CONTROL YOUR COST**
 - Business Knowledge
 - Digitalization
 - Protection

- **MITIGATE YOUR RISKS**
 - Maintenance
 - Multibrand
 - Upgrades

- **MAXIMIZE YOUR REVENUE**
 - New Reports
 - Assets No. Growth
 - oOEM

- **BI Tools**
- **Smart Fleet®**
- **Cyber-security**
- **PI System**

The Future

MITIGATE YOUR RISKS
We are

Cortaire, Juan Miguel
Chief Engineer
Siemens Gamesa Renewable Energy
Juan.Cortaire@siemensgamesa.com

Suescun, Edurne
Service Product Manager
Siemens Gamesa Renewable Energy
Maria.Suescun@siemensgamesa.com
Questions?

Please wait for the microphone

State your name & company

Please rate this session in the mobile app!

Search “OSIsoft” in your app store