Metallurgy Analytics Transforming Plant Data to Actionable Insights

Tara Rana: Barrick Gold Corp.

Jaco Steyn: Flank Engineering Inc.

Conference Theme & Keywords

Analytics Energy Management
Regulatory Compliance Time Series Real-time Event Frames Open System Digital Transformation
Open System Digital Transformation
Operational Intelligence Quality Integrators Connectiving Partin Infrastructure
Reliability
Process Scalability

Barrick Gold Corporation

- Barrick Gold is the world's largest gold producer
 - Head-Quartered in Toronto, ON, Canada.
 - Worldwide company with a focus on the Americas.
 - More than 75% of our gold production comes from the Americas region, including Argentina, Canada, Dominican Republic, Peru and the United States.
 - Barrick also has mining operations and projects in Australia, Chile, Papua New Guinea, Saudi Arabia, and Zambia.
 - At the end of 2017, Barrick had proven and probable gold reserves of 64.4 million ounces.

Barrick Nevada – Cortez Ops.

- 100 kilometers southwest of Elko, Nevada, in Lander and Eureka counties.
- Cortez Mining District mining since 1862.
- Proven and probable gold reserves at Cortez as of December 31, 2017, were 10.0 million ounces.
- One of the early adopters of OSISoft PI infrastructure, within Barrick.

Digital Transformation journey

- Barrick Gold, like many world-class companies today, has embarked on a Digital Transformation journey:
 - Harness the transformational potential of digital innovation across the whole enterprise.
 - Strategic Intent is to transform Barrick into a Digital Enterprise.
 - "A productive, safe, environmentally friendly, socially responsible low cost digital enterprise that leverages technology and data as a competitive advantage."

Transforming Plant Data into Actionable Insights

Barrick Gold Corporation is undergoing a major digital transformation, and needs to draw actionable insights from its volumes of data in a quick, effective and scalable manner.

CHALLENGE

- Process data was raw, poorly labelled, and didn't contain any context, making analytics inefficient and time-consuming.
- Engineers' ad-hoc analyses effected by slow data collection and processing methods
- Lack of process-type structure to data made data navigation challenging.

SOLUTION

RESULTS

Agenda

- Data Assembly and Preparation
- Data Contextualizing and Classifying
- Putting Data to Work Predictive Modeling
- Enhancing Process Transparency Communicating Insights

The Challenge with Big Data

Data ≠ **Information**

80% of the Time, 0% of the Value

20% of the Time, 100% of the Value

Metallurgy Analytics – PI System as Foundation

Unit Process Element Templates

Method

High-Level PI AF Element Templates applied to Process Sections

Reason

Implement a Standard, Scalable form for comparison.

Result

- Quickly compare cost drivers between sections.
- High-level sectional process models using key inputs.

PI Event Frames for Data Classification & Context

Classified by

- Operating Modes
- Operating Shifts / Crews
- Feed Types

Reason

Aggregation by classification / context in BI Tools.

Result

- Highlight opportunities by operating mode.
- Clean, contextual data for Process Modeling

©2018 OSIsoft, LLC

Data Driven Analytics - Machine Learning

Method

- PI Event Frames as sources of high-quality, cleansed, and contextualized modeling data sets.
- Model development in specialized 3rd party advanced analytical toolkits.

Result

- Significantly reduced time in data preparation and pre-processing for modeling purposes.
- Operating mode specific model deployment,
 e.g. predict only during running OK states.

PI Analysis to Gain Deeper Insights

PI Vision for Operations Transparency

MS Power BI for Visual Analytics

Transforming Plant Data into Actionable Insights

Barrick Gold Corporation is undergoing a major digital transformation, and needs to draw actionable insights from its volumes of data in a quick, effective and scalable manner.

CHALLENGE

- Process data was raw, poorly labelled, and didn't contain any context, making analytics inefficient and time-consuming.
- Engineers' ad-hoc analyses effected by slow data collection and processing methods
- Lack of process-type structure to data made data navigation challenging.

SOLUTION

PI Asset Framework employed as the foundation for data preparation, classification, and exposure to advanced analytical tools

- PI Event Frames used to build context layers onto high-level process sections.
- PI EF classified data as cleansed and prepared data sets directly used in Machine Learning tools

RESULTS

Enhanced understanding of major gold recovery drivers.

Rapidly scalable configuration of process sections to track major process consumables and cost drivers.

Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Speakers

- Tara Rana
- TRana@barrick.com
- Project Manager APC
- Barrick Gold Corporation

- Jaco.Steyn@flankeng.com
- Managing Director
- Flank Engineering Inc.

Merci

谢谢

Спасибо

Danke

Gracias

Thank You

ありがとう

감사합니다

Grazie

Obrigado