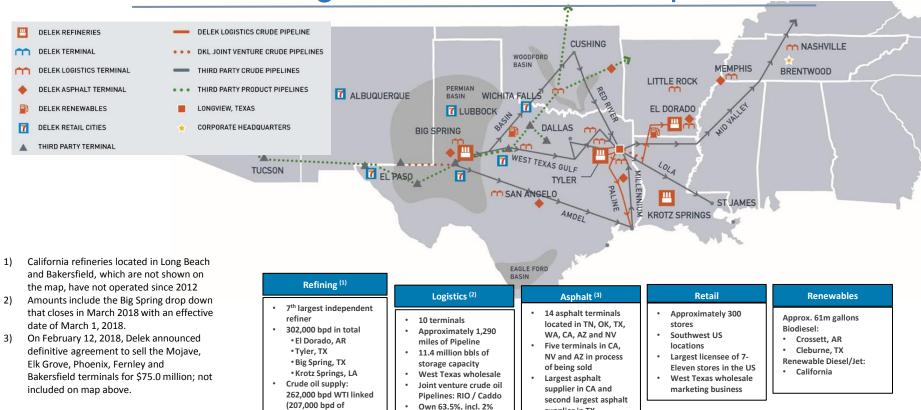
Enabling Delek's Digital Transformation with the Enterprise Agreement (EA)

Frank Simmons – VP, Refining Best Practices

Bob Gonzales – Dir. Training & Operational Excellence

John Arney – Process Information Coordinator

Telling Our Story...


Delek US at a Glance

- Supporting our Digital Transformation Strategy with the EA
- Delek US Refining PI System Highlight Reel
- Best Practices & Lessons Learned
- Continuing our Digital Transformation Journey
- Summary

Delek US Holdings at a Glance...Enterprise View

GP. of DKL

Permian access)

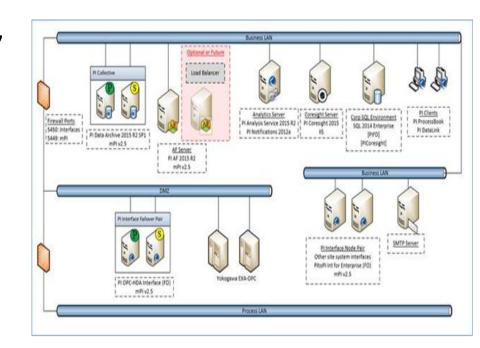
supplier in TX

Delek US Holdings at a Glance...Pl System View

Tyler, TX Refinery Configured Tags: 39,167

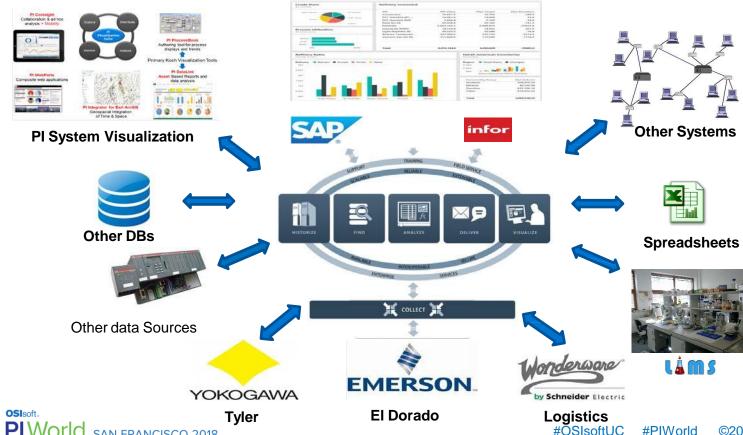
of Interfaces: 37

Event Frames: 2,283


Notifications: 193

El Dorado, AR Refinery Configured Tags: 42,308

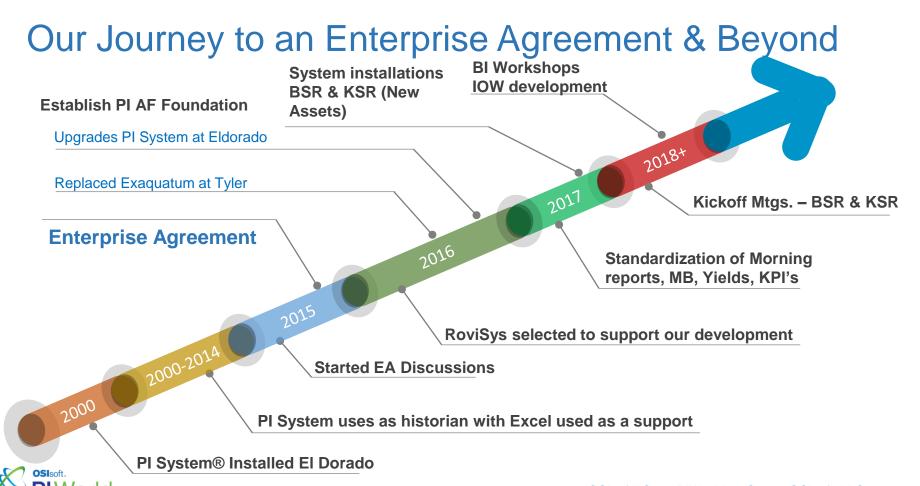
of Interfaces: 56


Event Frames: 10,685

Notifications: 14

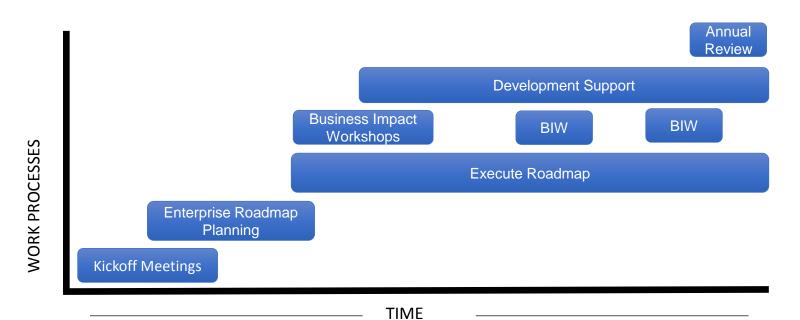
High-level PI System Positioning

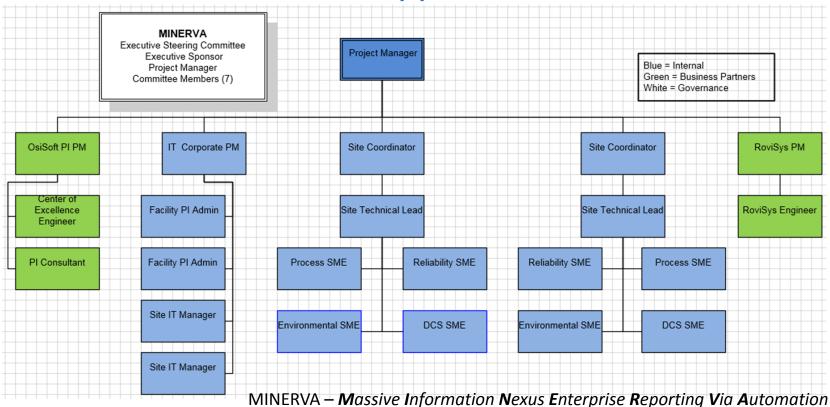
What does that mean?

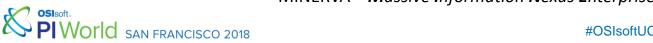

According to Wikipedia: **Digital transformation** is the change associated with the application of digital technology in all aspects of human society.

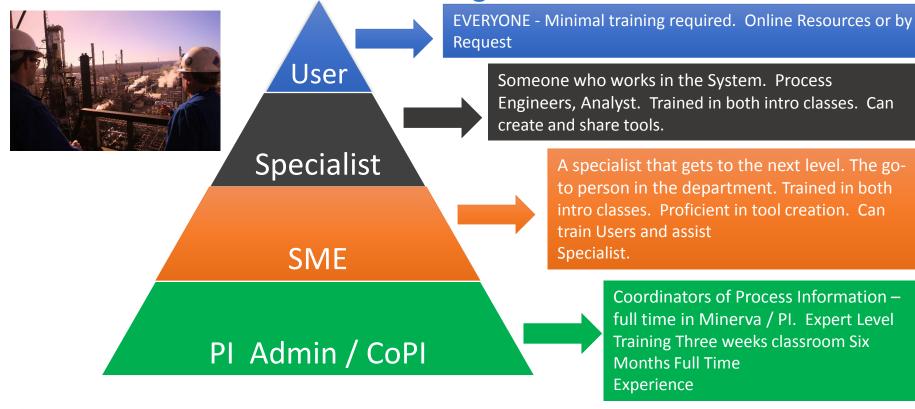
Digital transformation may be thought of as embracing digital technologies:

digital competence \rightarrow digital usage \rightarrow digital transformation


"People/culture empowerment/accountability & Process reengineering leveraging digital technologies"


Why the Enterprise Agreement (EA)?


We needed a structured approach . . .



MINERVA Committee Support "Roles"

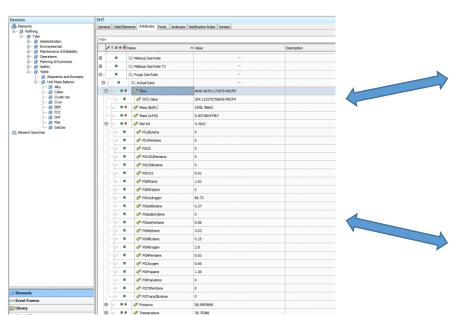
Minerva Utilization – Training Levels

Challenges we had to Overcome

Current Processes vs. Future Processes

- Scope Creep what we didn't know using PI
- Communication who was responsible / assumptions / teams
- Understanding of strategy and getting individuals and team alignment

Ownership of future processes

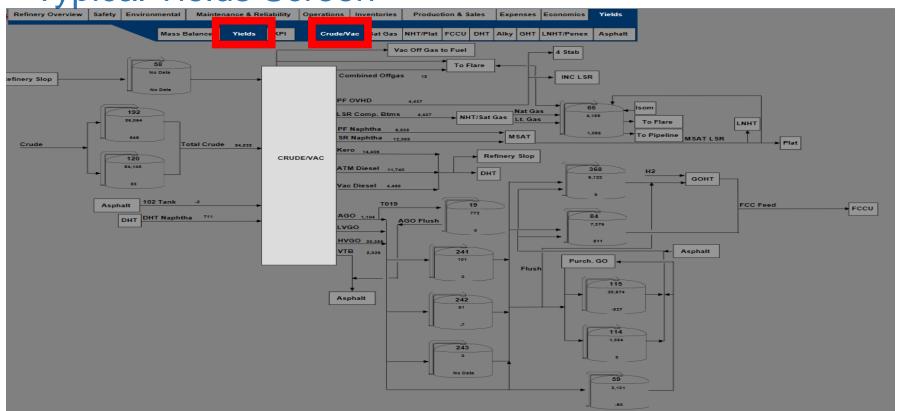


Delek Highlight Reel

PI AF Data Model is Foundational to Establishing Data Integrity and Trust

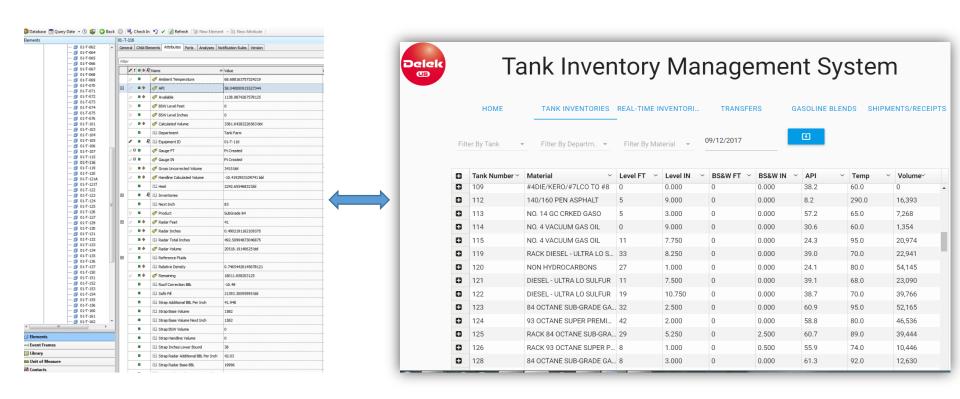
Refinery Overview	Safety	Envir	onmental	Maintena	ince & F	Reliability	Operations	Inve	ntories	Production	& Sales	Expense	Economic	5 Y	elds		
						Ma	ss Balance	KPI	Crude/\	Vac SatGas	FCCU DH	IT Alky	Coker Pla	t GHT	Cryo		
Inputs																	
	_	_			Acti	ual Data		_			Normalized D	ally Data		_	Normalize	d MTD Dat	,
		Flow	API Gravity	Mol Wt	Temp	Pressure	Mass (Ib/hr)	wt%	Liq Vol%	Flow	Mass (llb/hr)	Wt%	Liq Vol%	Flow	Mass (lb/hr)	w4%	Liq Vol ⁵
Crude Oil (Minus BS&W)		76,938	42.37	-	84.00	-	913,414	90.60%	98.52%	76,938	913,414	98.63%	98.52%	76,787	909,364	58.26%	98.081
DHT Excess LPG		652	64.00		84.44	-	6,050	0.74%	0.04%	652	6,858	0.74%	0.04%	792	8,267	0.89%	1.011
Naphtha from Tk 163		503	63.36		84.00	-	5,327	0.58%	0.64%	503	5,327	0.58%	0.64%	712	7,876	0.85%	0.911
Topped Crude from Stora	ige	-	-					-	-	-	-	-			-		
Total Inputs		78,093					925,599	100.00%	100.00%	78,093	925,599	99,95%	100.00%	78,292	925,506	100.00%	100.00
		Flow	API Gravity	Mol Wr	Acti	ual Data Pressure	Mass (lb/hr)	w4%	Lig Vol%	Flow	Normalized D	aily Data	Lie Vel%	Flow	Normalize Mass (lb/hr)	d MTD Dat	Lig Vol
Atmos Tower Offgas		104	-	35.02	111.94	167.2	714	0.00%	Ling York	50	721	0.02%	-	50	746	0.00%	Ling Vol
Vacuum Tower Offices		163		39.25	91.00	1.5	703	0.08%	-	59	710	0.02%		DS.	1,035	0.11%	
Preflash Naphtha to Sat C	las	15,398	95.84		117.79	-	160,240	17.31%	19,72%	15,576	161,790	17,48%	49.76%	15,612	192,360	17.54%	12,241
Atmos Naphtha to Sat Ga	15	9,416	51.25	-	111.42	-	103,188	11.15%	12,15%	9,596	104,187	11.26%	12.95%	9,596	114,735	12.40%	13.541
Preflash Naphtha to V-3		0	99.84		117.79	-	0	0.00%	0.00%	0	0	0.00%	0.00%		0	0.00%	0.001
Naphtha to Tk 163		4,849	63.26		84.00		51,392	5.55%	6.21%	4,905	51,889	5.61%	5.11%	4,905	36,102	3.90%	4.361
Kerosene		7,620	46.10	-	170.97	-	88,561	9.57%	9.76%	7,708	89,418	9.66%	10.09%	7,708	92,156	9.99%	10,155
SR Diesel		15,900	37.60		287.26		190,426	20.57%	19,98%	15,781	192,269	20.77%	20.20%	15,600	190,062	20.54%	19,931
AGO to FCC		1,414	31.37		633.76	-	17,921	1.94%	1.81%	1,430	18,094	1.95%	2.48%	1,430	26,482	2.86%	2.471
Topped Crude to Storage		0	41.19	-	112.86	-	0.00	0.00%	0.00%	0	0.00	0.00%	0.00%	0	0.00	0.00%	0.001
Vacuum Diesel		2,353	33.60		336.14	-	29,416	3.58%	3.01%	2,389	29,701	3.21%	3.12%	2,417	30,219	3.27%	3.091
IVGO to FCC		0	32.49		440.31	-	0	0.00%	0.00%	0	0	0.00%	0.00%		0	0.00%	0.001
		14,040	25.43	-	562.92		184,668	19,95%	17.98%	14,202	186,455	20,14%	18.09%	13,936	184,173	19.90%	17,801
HVGO to FCC																	
HVGO to FCC VTB		6,305 77,413	13.91	-	675.64		89,499	982%	9,67%	6,378 78,074	90,365	9,76%	7.89%	6,099 77,557	86,119	9.31%	7,79%

Refinery Overview	Safety Environ	mental Mai	ntenance & Re	eliability	Operations Inventories	Production 8	Sales Exp	enses Econon	nics
		0	verview A	Area 1 A	rea 2 Area 3 Area 4	Area 5			
Crude					DHT				
	Target	Now	Last 24	WTD		Target	Now	Last 24	WTD
Charge (R1/R2/R3)	56,000	56,419	55,403	55,593	Total Charge	28,000	26,193	24,018	24,460
LSR Yield	6,000	2,425	2,711	2,669	LCO Charge	4,000	2,125	1,639	1,591
Preflash Naphtha Yield	7,000	4,238	3,153	3,181	Stripper Overhead Naphtha		536.56	411.86	617.63
SR Naphtha Yield	11,000	7,628	7,530	7,585	ULSD Yield	27,184	11,481	11,495	11,434
Kerosene Yield	11,000	11,154	11,053	11,028	Heater Outlet	665.00	639.28	631.56	633.56
ATM Diesel Yield	17,500	9,478	9,710	9,524	Heater Duty	20.00	42.37	35.98	38.05
AGO Yield	4,000	181	194	197	Naphtha 90%	320.00	303.60	302.11	310.41
Crude Heater Outlet	690.00	661.82	661.48	662.82	ULSD 90%	590.00	590.90	590.02	590.42
Atm Heater Duty	135.00	129.13	139.19	129.46	ULSD Sulfur	8.00	9.35	6.78	6.42
Crude Charge Gravity	38.30	35.60	35.48	35.11	ULSD Flash	140.00	142.00	147.27	149.82
Unstab LSR Dry Point	175.00	171.50	173.64	174.75	ULSD Cloud	11.00	4.00	4.00	4.10
Stab LSR RVP	15.50	15.50	15.44	15.53	ULSD Haze	1.00	1.00	1.00	1.00
PF Naphtha 90%	280.00	279.90	273.32	279.32	ULSD Pour Point	1.00	0.00	0.00	0.00
SR Naphtha 90%	280.00	281.70	280.80	285.17	MOAT				
Kerosene 90%	480.00	484.30	479.54	487.36	MSAT				
Atm Diesel 90%	620.00	614.50	618.25	618.23					
Vacuum						Target	Now	Last 24	WTD
vacaam					Charge	20,000	12,801	12,015	11,824
	Target	Now	Last 24	WTD	Overhead Yield	3,000	4,402	4,330	4,296
	- I Wiget				Bottoms Yield	17,000	8,392	8,272	8,200
Vac Charge	26,000	24,635	25,446	25,706	Benzene	0.20	0.00	0.00	0.00
Vac Diesel Yield	4,000	1,843	1,855	1,847	Cyclohexane	0.40	0.00	0.00	0.00
HVGO Yield	16,000	15,395	14,844	14,325					
VTB Yield	5,750	12,205	13,301	14,203					
Vacuum Tower Pressure	35.00	48.02	47.89	45.94					
Heater Outlet	760.00	760.24	750.55	743.19					

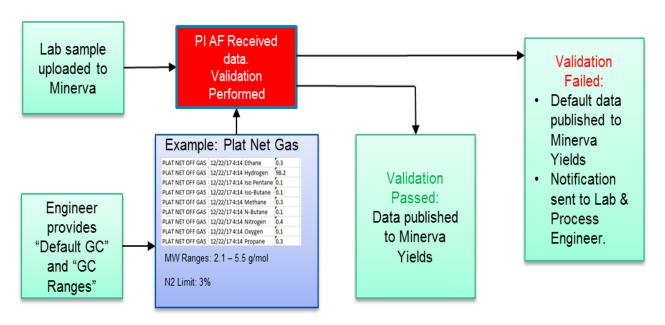


Typical Mass Balance Screen

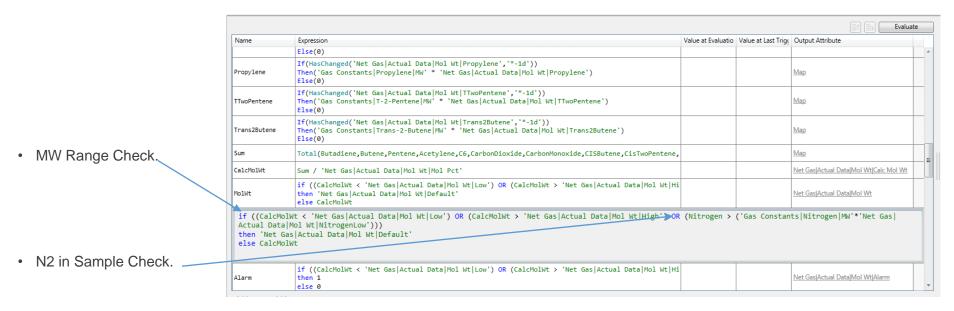
	_						_						_			
Refinery Overview Safet	y Envir	onmental	Maintena	nce & R	eliability	Operations	Inver	ntories	Production	& Sales	Expenses	Economics	Yie	elds		
		Mass Ba	lance	Yields	KPI	Crude	Vac s	at Gas N	IHT/Plat FC0	U DHT	Alky GHT	LNHT/Pene	x As	phalt		
Inputs																
				Actu	ual Data					Normalized				Normalize	d MTD Data	а
	Flow	API Gravity	Mol Wt	Temp	Pressure	Mass (lb/hr)	wt%	Liq Vol%	Flow	Mass (lb/hr	wt%	Liq Vol%	Flow	Mass (lb/hr)	wt%	Liq Vol%
Crude Oil (Minus BS&W)	76,938	42.37	-	84.00		913,414	98.68%	98.52%	76,938	913,414	98.63%	98.52%	76,787	909,364	98.26%	98.08%
DHT Excess LPG	652	64.80		84.44	-	6,858	0.74%	0.84%	652	6,858	0.74%	0.84%	792	8,267	0.89%	1.01%
Naphtha from Tk 163	503	63.36	-	84.00	-	5,327	0.58%	0.64%	503	5,327	0.58%	0.64%	712	7,876	0.85%	0.91%
Topped Crude from Storage										-						
Total Inputs	78,093					925,599	100.00%	100.00%	78,093	925,599	99.95%	100.00%	78,292	925,506	100.00%	100.00%
Outputs																
					ual Data					Normalized	Daily Data			Normalize	d MTD Data	_
	Flow	API Gravity	Mol Wt	Temp	Pressure											
Atmos Tower Offgas				remp	Pressure	Mass (lb/hr)	wt%	Liq Vol%	Flow	Mass (lb/hr	wt%	Liq Vol%	Flow	Mass (lb/hr)	wt%	Liq Vol%
	184		35.02	111.94	167.2	Mass (Ib/hr) 714	wt% 0.08%	Liq Vol%		Mass (lb/hr)		Liq Vol%	Flow 60			
Vacuum Tower Offgas	184 163					. ,			58		0.08%			Mass (lb/hr)	wt%	Liq Vol%
Preflash Naphtha to Sat Gas		-	35.02	111.94	167.2	714	0.08%	-	58	721	0.08%	-	60	Mass (lb/hr) 746	wt% 0.08%	Liq Vol%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas	163 15,398 9,486	 66.84 58.25	35.02 39.25	111.94 91.00 117.79 111.42	167.2 1.5	714 703	0.08% 0.08% 17.31% 11.15%	19.72% 12.15%	58 59	721 710	0.08% 0.08% 17.48% 11.26%	49.76% 12.95%	60 86	Mass (lb/hr) 746 1,035	wt% 0.08% 0.11% 17.54% 12.40%	Liq Vol% 19.94% 13.54%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3	163 15,398 9,486 0	 66.84	35.02 39.25	111.94 91.00 117.79	167.2 1.5	714 703 160,240	0.08% 0.08% 17.31%	 19.72%	58 59 15,576 9,596	721 710 161,790	0.08% 0.08% 17.48% 11.26%	 49.76%	60 86 15,612	Mass (lb/hr) 746 1,035 162,360	wt% 0.08% 0.11% 17.54%	Liq Vol% 19.94%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas	163 15,398 9,486	 66.84 58.25	35.02 39.25 	111.94 91.00 117.79 111.42	167.2 1.5 	714 703 160,240 103,188	0.08% 0.08% 17.31% 11.15%	19.72% 12.15%	58 59 15,576 9,596	721 710 161,790 104,187	0.08% 0.08% 17.48% 11.26% 0.00%	49.76% 12.95%	60 86 15,612 9,596	Mass (lb/hr) 746 1,035 162,360 114,735	wt% 0.08% 0.11% 17.54% 12.40%	Liq Vol% 19.94% 13.54%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3	163 15,398 9,486 0	 66.84 58.25 66.84	35.02 39.25 	111.94 91.00 117.79 111.42 117.79	167.2 1.5 	714 703 160,240 103,188 0	0.08% 0.08% 17.31% 11.15% 0.00%	19.72% 12.15% 0.00%	58 59 15,576 9,596	721 710 161,790 104,187	0.08% 0.08% 17.48% 11.26% 0.00% 5.61%	49.76% 12.95% 0.00%	60 86 15,612 9,596 0	Mass (lb/hr) 746 1,035 162,360 114,735 0	wt% 0.08% 0.11% 17.54% 12.40% 0.00%	Liq Vol% 19.94% 13.54% 0.00%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3 Naphtha to Tk 163	163 15,398 9,486 0 4,849	 66.84 58.25 66.84 63.26	35.02 39.25 	111.94 91.00 117.79 111.42 117.79 84.00	167.2 1.5 	714 703 160,240 103,188 0 51,392	0.08% 0.08% 17.31% 11.15% 0.00% 5.55%	19.72% 12.15% 0.00% 6.21%	58 59 15,576 9,596 0 4,905	721 710 161,790 104,187 0 51,889	0.08% 0.08% 17.48% 11.26% 0.00% 5.61% 9.66%	49.76% 12.95% 0.00% 5.11%	60 86 15,612 9,596 0 4,905	Mass (lb/hr) 746 1,035 162,360 114,735 0 36,102	wt% 0.08% 0.11% 17.54% 12.40% 0.00% 3.90%	Liq Vol% 19.94% 13.54% 0.00% 4.36%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3 Naphtha to Tk 163 Kerosene	163 15,398 9,486 0 4,849 7,620	66.84 58.25 66.84 63.26 46.10	35.02 39.25 	111.94 91.00 117.79 111.42 117.79 84.00 170.97	167.2 1.5 	714 703 160,240 103,188 0 51,392 88,561	0.08% 0.08% 17.31% 11.15% 0.00% 5.55% 9.57%	19.72% 12.15% 0.00% 6.21% 9.76%	58 59 15,576 9,596 0 4,905 7,708	721 710 161,790 104,187 0 51,889	0.08% 0.08% 17.48% 11.26% 0.00% 5.61% 9.66%	49.76% 12.95% 0.00% 5.11% 10.09%	60 86 15,612 9,596 0 4,905 7,708	746 1,035 162,360 114,735 0 36,102 92,156	wt% 0.08% 0.11% 17.54% 12.40% 0.00% 3.90% 9.96%	19.94% 13.54% 0.00% 4.36% 10.15%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3 Naphtha to Tk 163 Kerosene SR Diesel	163 15,398 9,486 0 4,849 7,620 15,600	 66.84 58.25 66.84 63.26 46.10	35.02 39.25 	111.94 91.00 117.79 111.42 117.79 84.00 170.97 287.26	167.2 1.5 	714 703 160,240 103,188 0 51,392 88,561 190,426	0.08% 0.08% 17.31% 11.15% 0.00% 5.55% 9.57%	19.72% 12.15% 0.00% 6.21% 9.76% 19.98%	58 59 15,576 9,596 0 4,905 7,708	721 710 161,790 104,187 0 51,889 89,418	0.08% 0.08% 17.48% 11.26% 0.00% 5.61% 9.66% 20.77% 1.95%	49.76% 12.95% 0.00% 5.11% 10.09% 20.20%	60 86 15,612 9,596 0 4,905 7,708	Mass (lb/hr) 746 1,035 162,360 114,735 0 36,102 92,156 190,062	wt% 0.08% 0.11% 17.54% 12.40% 0.00% 3.90% 9.96% 20.54%	Liq Vol% 19.94% 13.54% 0.00% 4.36% 10.15% 19.93%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3 Naphtha to Tk 163 Kerosene SR Diesel AGO to FCC	163 15,398 9,486 0 4,849 7,620 15,600 1,414	66.84 58.25 66.84 63.26 46.10 37.60 31.37	35.02 39.25 	111.94 91.00 117.79 111.42 117.79 84.00 170.97 287.26 633.76	167.2 1.5 	714 703 160,240 103,188 0 51,392 88,561 190,426 17,921	0.08% 0.08% 17.31% 11.15% 0.00% 5.55% 9.57% 20.57%	19.72% 12.15% 0.00% 6.21% 9.76% 19.98%	58 59 15,576 9,596 0 4,905 7,708 15,781 1,430	721 710 161,790 104,187 0 51,889 89,418 192,269	0.08% 0.08% 17.48% 11.26% 0.00% 5.61% 9.66% 20.77% 1.95%	49.76% 12.95% 0.00% 5.11% 10.09% 20.20% 2.48%	60 86 15,612 9,596 0 4,905 7,708 15,600 1,430	Mass (lb/hr) 746 1,035 162,360 114,735 0 36,102 92,156 190,062 26,482	wt% 0.08% 0.11% 17.54% 12.40% 0.00% 3.90% 9.96% 20.54%	Liq Vol% 19.94% 13.54% 0.00% 4.36% 10.15% 19.93% 2.47%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3 Naphtha to Tk 163 Kerosene SR Diesel AGO to FCC Topped Crude to Storage	163 15,398 9,486 0 4,849 7,620 15,600 1,414	66.84 58.25 66.84 63.26 46.10 37.60 31.37	35.02 39.25 	111.94 91.00 117.79 111.42 117.79 84.00 170.97 287.26 633.76 112.86	167.2 1.5 	714 703 160,240 103,188 0 51,392 88,561 190,426 17,921	0.08% 0.08% 17.31% 11.15% 0.00% 5.55% 9.57% 20.57% 1.94%	19.72% 12.15% 0.00% 6.21% 9.76% 19.98% 1.81%	58 59 15,576 9,596 0 4,905 7,708 15,781 1,430	721 710 161,790 104,187 0 51,889 89,418 192,269 18,094	0.08% 0.08% 17.48% 11.26% 0.00% 5.61% 9.66% 20.77% 1.95% 0.00% 3.21%	49.76% 12.95% 0.00% 5.11% 10.09% 20.20% 2.48% 0.00%	60 86 15,612 9,596 0 4,905 7,708 15,600 1,430	Mass (Ib/hr) 746 1,035 162,360 114,735 0 36,102 92,156 190,062 26,482 0.00	wt% 0.08% 0.11% 17.54% 12.40% 0.00% 3.90% 9.96% 20.54% 2.86% 0.00%	Liq Vol%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3 Naphtha to Tk 163 Kerosene SR Diesel AGO to FCC Topped Crude to Storage Vacuum Diesel	163 15,398 9,486 0 4,849 7,620 15,600 1,414 0 2,353	66.84 58.25 66.84 63.26 46.10 37.60 31.37 41.19	35.02 39.25 	111.94 91.00 117.79 111.42 117.79 84.00 170.97 287.26 633.76 112.86 336.14	167.2 1.5 	714 703 160,240 103,188 0 51,392 88,561 190,426 17,921 0.00 29,416	0.08% 0.08% 17.31% 11.15% 0.00% 5.55% 9.57% 20.57% 1.94% 0.00% 3.18%	19.72% 12.15% 0.00% 6.21% 9.76% 19.98% 1.81% 0.00% 3.01%	58 59 15,576 9,596 0 4,905 7,708 15,781 1,430 0 2,380	721 710 161,790 104,187 0 51,889 89,418 192,269 18,094 0.00	0.08% 0.08% 17.48% 11.26% 0.00% 5.61% 9.66% 20.77% 1.95% 0.00% 3.21%	49.76% 12.95% 0.00% 5.11% 10.09% 20.20% 2.48% 0.00% 3.12%	60 86 15,612 9,596 0 4,905 7,708 15,600 1,430 0	Mass (Ib/hr) 746 1,035 162,360 114,735 0 36,102 92,156 190,062 26,482 0.00 30,219	wt% 0.08% 0.11% 17.54% 12.40% 0.00% 3.90% 9.96% 20.54% 2.86% 0.00% 3.27%	Liq Vol% 19.94% 13.54% 0.00% 4.36% 10.15% 19.93% 2.47% 0.00% 3.09%
Preflash Naphtha to Sat Gas Atmos Naphtha to Sat Gas Preflash Naphtha to V-3 Naphtha to Tk 163 Kerosene SR Diesel AGO to FCC Topped Crude to Storage Vacuum Diesel IVGO to FCC	163 15,398 9,486 0 4,849 7,620 15,600 1,414 0 2,353	66.84 58.25 66.84 63.26 46.10 37.60 31.37 41.19 33.60	35.02 39.25 	111.94 91.00 117.79 111.42 117.79 84.00 170.97 287.26 633.76 112.86 336.14 440.31	167.2 1.5 	714 703 160,240 103,188 0 51,392 88,561 190,426 17,921 0.00 29,416	0.08% 0.08% 17.31% 11.15% 0.00% 5.55% 9.57% 20.57% 1.94% 0.00% 3.18%	19.72% 12.15% 0.00% 6.21% 9.76% 19.98% 1.81% 0.00% 3.01%	58 59 15,576 9,596 0 4,905 7,708 15,781 1,430 0 2,380	721 710 161,790 104,187 0 51,889 89,418 192,269 18,094 0.00 29,701	0.08% 0.08% 17.48% 11.26% 0.00% 5.61% 9.66% 20.77% 1.95% 0.00% 3.21%	49.76% 12.95% 0.00% 5.11% 10.09% 20.20% 2.48% 0.00% 3.12%	60 86 15,612 9,596 0 4,905 7,708 15,600 1,430 0 2,417	Mass (Ib/hr) 746 1,035 162,360 114,735 0 36,102 92,156 190,062 26,482 0.00 30,219 0	wt% 0.08% 0.11% 17.54% 12.40% 0.00% 3.90% 9.96% 20.54% 2.86% 0.00% 3.27% 0.00%	Liq Vol%


Typical Yields Screen

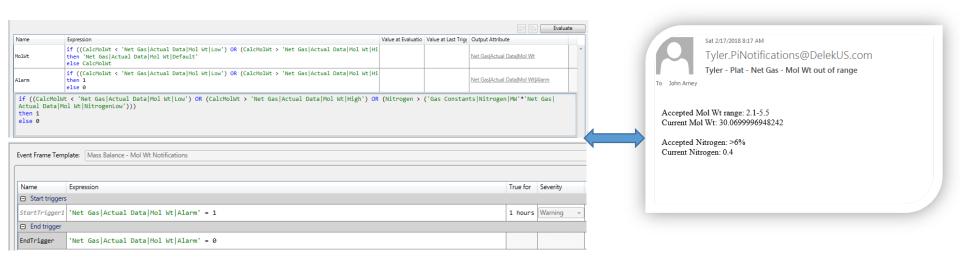
Typical Key Process Information Screen


efinery Overvi	w Safety	Enviror	nmental	Maintena	nce & Relia	bility C	perations	Inve	entories	Produc	tion & S	ales	Expe	enses	Economics	Yields
			Mass Ba	lance	Yields	KPI	Crude/\	ac	Sat Gas	NHT/Plat	FCCU	DHT	Alky	GHT	LNHT/Penex	Aspha
Key	Process	Inform	ation				Cr	ıde	Tower							
			Now	WTD	MTD	ΥT	D				Now	,	WTD	N	NTD YTD	
Raw Ci	ude BS&W, v	ol%	0.30	0.33	0.31	0.2	9 Cruc	e Tow	er Top Ter	np, °F	299		287		291 304	
Raw Ci	ude Salt, ptb		55	62	57	6	4 Reflu	ıx Dru	m Temp, °	=	298		286		290 302	
Wash \	Vater Rate, vo	1%	157	157	157	15	6 Kero	Draw	Tray Temp	o, °F	485		490		479 478	
Desalte	d Crude Salt,	ptb	0.4	0.8	0.9	0.	7 Dies	el P/A	Return Ter	np, °F	409		408		402 400	
Desalte	r Efficiency, 9	6	98.4%	98.7%	98.4%	98.99	6 Dies	el Drav	w Tray Ten	ıp, °F	561		559		551 557	
Desalte	r Temp, °F		277	276	275	28	2 AGC	P/U T	emp, °F		422		421		421 423	
	r Pressure		193	197	207	19			Tray Temp	o, °F	607		606		600 606	
Crude	Tower Pressu	re	26.9	27.0	27.1	24.			x Temp, °F							
Vacuu	n Pressure, m	mHg	52.9	45.1	59.6	58.	o Abo	e Flas	sh Zone Te	mp, °F	635		634		628 634	
Steam	Flow to Ejecto	rs, lb/hr					Flas	Zone	e Temp, °F							
Steam	Press to Eject	ors, psig	140	140	140	14	o Heat	er Out	tlet Temp, '	F	643		644		638 650	
N PF H	eater Efficiend	y, %	81.2	80.9	81.1	81.	1 ATB	Temp	, °F		614		613		612 625	
S PF H	eater Eff, %		82.6	82.6	82.2	82.	6 Refl	ıx Rat	e, BPD		26	:	25,598	25	,555 22,918	
Crude	Heater Inlet Te	mp, °F	643	644	638	65	0 Dies	el P/A	Rate, BPD		15		15,233	15	,302 14,714	
Atmos	Twr Heater Et	f, %	81.4	81.8	81.1	80	8 AGC	P/U F	Rate, BPD		15		15,706	16	,554 15,442	
Vac He	ater Inlet Tem	p, °F					AGO	P/D R	Rate, BPD		871		872		870 925	
Vac Tv	r Heater Eff, 9	6	76.8	76.6	73.3	75.	o AGC	Rate	to FCC		1,042		1,104	1	,099 812	
MSAT	leater Inlet Te	mp, °F					Strip	ping 9	Steam, ML	BH	8.87		8.03		6.11 5.25	
MSAT	wr Heater Eff	, %					Valv	e % O	pen		23.0		20.5		15.8 13.7	
									Kero 5		47		50		50 51	
							Kerd	95:Di	esel 5		-95		-102		-84 -85	
Vac	ıum Tow	er					Dies	el 95:A	AGO 5		-179		-181		-168 -177	
			Now	WTD	MTD	YTI)				Now		WTD	N	NTD YTD	
Vac To	wer Top Temp	o, °F	261	250	272	24	LVG	O Proc	duct Flow,	BPD						
Diesel	Draw Tray Ter	np, °F	292	289	298	29	LVG	O P/D	Flow, BPD							
Diesel	P/U Return Te	mp, °F	209	211	217	20		Char	ge Vac Twi	LBH	14,582		14,594	14	,492 10,750	
LVGO	Draw Tray Ten	np, °F	502	496	504	50	HVG	O P/D	Flow Was	oil, BPD	4		5,042	4	,452 5,278	
HVGO	Draw Tray Ter	np, °F	678	672	680	66	HVG	O P/A	Flow, BPD		33	:	33,002	31	,990 31,177	
	Outlet Temp,		758	752	752	75			duct, BPD			_	20,324		,204 19,340	_
VTB Te			695	657	665	66	Strip	ping 9	Steam, MLI	ЗН						
Diesel	o Storage Flo	w, BPD	4	4,647	5,394	4,15		e % O								
	P/D Flow, BPE		9	9,004	7,507	7,27			95:HVGO	5	-12		-16		-19 -9	
Diesel	P/U Flow, BPE		34	33,998	31,955	29,43		O 95:\	VTB 5		-75		-75		-75 -98	

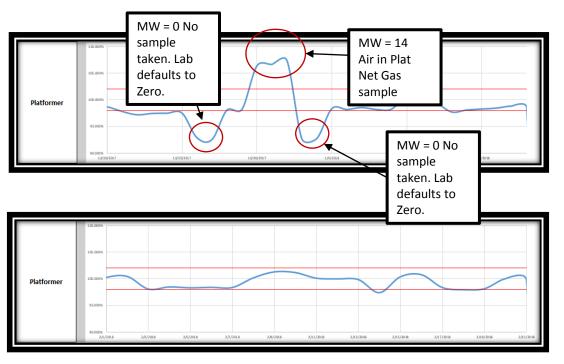
Tank Inventory Management System



Use PI AF to assist in foundation data integrity and trust.



 EXAMPLE: Use PI AF to assist in foundation data integrity and trust.



 We now have "Event Frames" set up to notify process engineer when MW or N2 is out of range.

January 2018

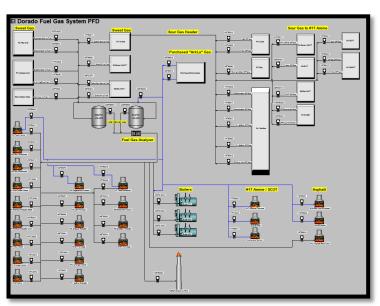
February 2018

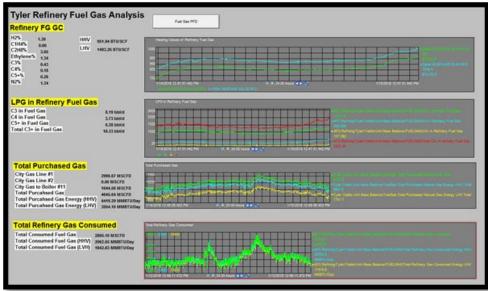


Improved Gas Stream Analysis

Easily track barrels of LPG and BTU flow per stream.

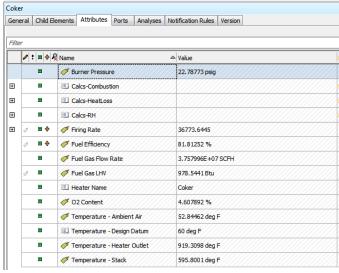
Plat Net Gas | LPG (BPD)


Plat Net Gas | HHV / LHV



Fuel Gas Analysis

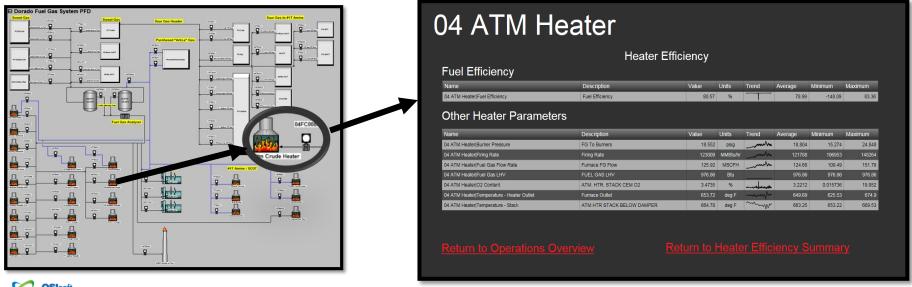
• Live fuel gas analysis of each refinery to use as tool to properly manage and track fuel gas.



Heater Efficiency before PI AF – Excel

Start	10/30/13										
End	10/30/13										
Duration	2m										
A B	1.00E-06	4.00E-06									
C	0.0224 -1.836	0.0364 -4.5918									
	-1.030	-4.3310									
Reactor Heate	GOH										
Stack Temp, F	Excess Air 0	cess Air 10	0,2	xcess Air	tack Loss	Efficience	tr Houtle	Fuel gas	Htr Duty	TR Duty Limi	t
12TX0300			12AX0600				12TC0305	12FC0004	EQ120301		
*****	44.00	49.44		10.10	****						
808.67 808.62	16.93	27.46 27.46	3.41	19.40	18.97	79.03 79.03	715.71 715.82	44.44	47.02 47.02	50.0 50.0	
807.05	16.83	27.39	3,42	13.42	18.93	79.07	715.93	44,44	47.02	50.0	
805.05	16.85	27.30	3.42	19.43	18.88	79.12	716.04	44.44	47.02	50.0	
804.11	16.82	27.26	3,42	13,44	18.85	79.15	716.15	44.44	47.02	50.0	
804.14	16.82	27.27	3.42	19.45	18.85	79.15	716.27	44.42	47.02	50.0	
804.87	16.84	27.30	3.42	19.46	18.88	79.12	716.47	43.66	45.61	50.0	
804.44	16.83	27.28	3.42	19.47	18.87	79.13	716.75	43.15	45.59	50.0	
804.01	16.82	27.26	3.42	19.48	18.85	79.15	715.99	43.15	45.59	50.0	
803.52	16.81	27.24	3.38	19.16	18.81	79.19	714.63	43.15	45.59	50.0	
800.87	16.74	27.13	3.24	18.27	18.64	79.36	713.26	43.83	45.59	50.0	
799.28	16.71	27.06	3.11	17.39	18.51	79,49	712.14	44.28	46.28	50.0	
799.47 803.52	16.71	27.07	2.98 2.84	16.52 15.66	18.42	79.58 79.56	712.54 713.37	45.12 45.25	46.80 46.80	50.0 50.0	
807.18	16.30	27.40	2.04	16.03	18.58	79.42	716.07	44.41	46.80	50.0	
807.73	16.91	27.42	3.20	17.36	18.80	79.20	717.41	43,60	46.80	50.0	
805.37	16.85	27.32	3.49	19.95	18.94	79.06	715.96	43.67	46.80	50.0	
804.27	16.83	27.27	3,64	20.95	19.01	78.99	713.67	44.54	46.80	50.0	
804.68	16.84	27.29	3.68	21.28	19.06	78.94	713.18	44.94	46.80	50.0	
806.00	16.87	27.35	3.73	21.60	19.13	78.87	713.85	45.31	46.80	50.0	
805.73	16.86	27.33	3.78	21.93	19.16	78.84	714.52	45.31	46.80	50.0	
806.54	16.88	27.37	3.82	22.27	19.22	78.78	714.57	45.31	46.80	50.0	
808.25	16.92	27.44	5.01	31.31	20.22	77.78	713.96	45.31	46.80	50.0	
811.41	17.00	27.58	5.16	32.57	20.44	77.56	713.29	45.31	46.80	50.0	
815.80 820.70	17.10 17.22	27.77	5.12 5.07	32.21 31.86	20.54	77.46 77.35	712.23 712.84	45.86 46.10	47.80 48.34	50.0 50.0	
825.60	17.34	28.19	5.03	31.50	20.76	77.24	713.78	46.10	48.34	50.0	
828.18	17.40	28.30	4.99	31.15	20.80	77.20	714.73	46.10	48.34	50.0	
828.22	17.40	28.30	4,34	30.80	20.76	77.24	714.93	46.10	48.34	50.0	
827.64	17.39	28.27	4.90	30.45	20.70	77.30	714.34	46.10	48.34	50.0	
825.45	17.34	28.18	4.86	30.11	20.60	77.40	713.76	46.32	48.34	50.0	
824.61	17.32	28.14	4.82	29.76	20.54	77.46	713.86	46.71	48.34	50.0	
824.48	17.31	28.14	4.77	29.42	20.50	77.50	714.34	46.91	48.67	50.0	
824.46	17.31	28.14	4.73	29.08	20.46	77.54	714.82	47.26	49.39	50.0	
824.44	17.31	28.14	4.69	28.74	20.42	77.58	715.15	47.26	49.39	50.0	
824.41	17.31	28.14	4.64	28.40	20.38	77.62	715.25	47.26	49.39	50.0	
824.05 823.44	17.30 17.29	28.12	4.60 4.56	28.07	20.34	77.66	715.35 715.44	47.26 47.26	49.39	50.0 50.0	
822.77	17.27	28.06	4.52	27.40	20.23	77.77	715.54	46.53	48.60	50.0	
820.07	17.21	27.95	4.47	27.07	20.11	77.89	715.64	46.32	48.31	50.0	
817.88	17.15	27.85	4.43	26.71	20.01	77.99	715.70	46.32	48.31	50.0	
816.84	17.13	27.81	4.32	25.89	19.89	78.11	715.54	46.32	48.31	50.0	
816.27	17.11	27.79	4.13	24.34	19.78	78.22	715.57	46.30	48.31	50.0	
815.69	17.10	27.76	4.07	24.00	19.66	78.34	716.82	45.51	47.84	50.0	
814.34	17.07	27.70	3.94	23.08	19.52	78.48	716.23	45.12	47.14	50.0	
811.74	17.01	27.59	3.81	22.17	19.35	78.65	715.46	45.12	47.14	50.0	
809.70	16.36	27.50	3.68	21.28	19.20	78.80	715.08	45.12	47.14	50.0	
809.84	16.36	27.51	3.56	20.39	19.11	78.89	715.24	45.24	47.14	50.0	
809.98	16.96	27.52	3.43	19.52	19.02	78.98	715.41	45.56	47.14 47.14	50.0	
809,96 808,04	16.36 16.32	27.52 27.43	3.30	18.67 17.82	18.93	79.07 79.21	715.58 715.73	45.13 45.13	47.14	50.0 50.0	
804.85	16.84	27.30	3.05	16.33	18.62	79.38	715.84	45.13	47.14	50.0	
804.00	16.82	27.26	2.92	16.17	18.51	79.49	715.94	45.13	47.14	50.0	
803.61	16.81	27.24	2.80	15.36	18.41	79.59	716.04	44.33	46.21	50.0	
803.22	16.80	27.23	2.70	14.75	18.34	79.66	716.14	43.86	46.00	50.0	
802.83	16.79	27.21	2.67	14.56	18.31	79.69	716.25	43.55	46.00	50.0	

16.76 27.16 2.64 14.40 18.26 79.74 716.08 43.55 46.00 50.0



Name	Expression	Value at Evaluation
hL	'Calcs-Combustion Heating Value'/'Calcs-Combustion Fuel Mass'	20603
Deltaha	'Calcs-HeatLoss Deltaha'	-36.528
Deltahf	'Calcs-HeatLoss Deltahf'	-4.4984
Deltahm	'Calcs-HeatLoss Deltahm'	0
hr	'Calcs-HeatLoss hr'	515.06
hs	'Calcs-HeatLoss hs'	3204.4
FE	((hL+Deltaha+Deltahf+Deltahm)-(hr+hs))/hL*100	81.747

Heater Efficiency / Reliability

- Use AF to monitor heater efficiency KPIs.
- Work being developed for Reliability: Tube Skin Temperature IOW

Perspectives for Consideration

Best Practices:

- MINERVA Committee / Executive Committee meetings
- Roles versus job- interested resources to support continuous improvement
- Implemented an online change request form for minor / major changes
- Implemented "Sandbox" and "Production" database MOC-type process to test / validate in "Sandbox" before moving to "Production"
- Each PI administration supports each others refinery
- Production database replaces Sandbox once a quarter

Lessons Learned:

- · Identified "Scope Creep" and dealt with it
- A lot of assumptions were being made
- "My" process vs. "Our" process getting everyone on board
- Digital transformation is an growing process that needs to be embraced

Digital Transformation – Journey Continues . . .

- Expand MINERVA to other Business Units
- Integration of MINERVA within the business units within the Company
- Evolve CBM (Condition Based Monitoring) and our focus on asset reliability leveraging PI AF and integration into a preventative maintenance program to leverage health indexes & anomaly detection
- Continue to "educate & empower" our resources on the capabilities of the PI System
- Continuous improvement through clear value metrics with audits and "Yearly Reviews"

Enabling Our Digital Transformation(DT) with the EA

GOAL: Become a 1st Quartile Performer in key Solomon indices and EBITDA though a digitally enhanced operational excellence program – a Digital Transformation.

CHALLENGE

Diverse culture and operational data systems inhibiting desired business performance risking long term sustainability

- Multiple historians and "Excel hell"
- Inefficient work processes, sharing of best practices and knowledge
- No local and enterprise wise, proactive, exception based data based decisions

SOLUTION

Entered into a strategic, value focused partnership with the EA and started our DT journey with Focus on historian and excel normalization via PI AF Templates

- Initially focused on KPIs, dashboards, and reports – normalization of data
- Started analytics with PI AF Templates
- Leveraged PI Vision for self serve BI and mobility

RESULTS

Standardization of key dashboards, KPIs, & reports; foundation for the next chapter in DT journey

- Defined the Delek "language" with PI AF
- Bringing culture together and capturing knowledge, best practices, and standards
- Established foundation for improved definition of our DT vision and "chapters"
- Ability to abstract new Alon refineries into our "OT chart of accounts" using PI AF

Contact Information

- Frank Simmons
- Frank.Simmons@delekus.com
- VP, Refining Best Practices
- Delek US

- Bob Gonzales
- Bob.Gonzales@delekus.com
- Director, Training & Operational Excellence
- Delek US

- John Arney
- John.Arney@delekus.com
- Process Information Coordinator
- Delek US

Merci

谢谢

Спасибо

Danke

Gracias

Thank You

ありがとう

감사합니다

Grazie

Obrigado

