

The Evolution of the PI System at EQT in Support of our Digital Transformation

Presented by

Oscar Smith

Sr. Principal Engineer

EQT Midstream

Brian Morel

Manager Drilling Engineering

EQT Production

Overview of Presentation

- EQT Corporation Overview
- EQT Midstream Objectives
- The Journey
- Example Case Studies and Benefits
- Next Steps
- EQT E&P's Journey

EQT Corporation Overview

Two Integrated Business Units

Natural Gas Exploration, Development, and Transportation

- Headquartered in Pittsburgh, PA
- 2018 marks our 130th Year in Business.
- Operations Across Appalachian Region & Texas
- Largest Natural Gas Producer in the United States
- More than 1,800 Employees
- Innovative Techniques & Strategies Employed Across Two Distinct Business Units
 - EQT Production-Natural Gas Exploration, Drilling, & Development
 - EQT Midstream-Natural Gas Gathering, Transportation, & Storage

Role in the Natural Gas Value Chain

EQT Midstream PARTNERS, LP

- Approximately +2.0 BCFD **Marcellus Gathering Capacity**
- Gas Gathering

 - **Pipelines**

Brian

- Reciprocating Compressors/Engines
- Measurement

Oscar

- Transmission & Storage
 - Reciprocating & Centrifugal Compressors
 - **Large Pipelines**
 - Storage Facilities

EQT Midstream Objectives

Midstream Goals & Focus

Objectives – Build Exceptional Operational and Business Intelligence

Provide Natural Gas Gathering & Transportation Services

- Health & Safety #1 Priority
- Customer Service Focus
- High System Availability & Capacity
- Provide Value for Customers & Shareholders

Strategy

- Operate & Maintain Assets Efficiently & Cost Effectively
- Apply Innovative Technologies to All Facets of the Business
- Maintain High Expectations of Quality & Integrity

Plan & Implementation

- High Reliability Compressors & Pipelines
- Data & Analysis for Operational Awareness & Excellence
- Transform the Business from Reactive to Proactive (Predictive) Model

Cost Effective Operation

The Journey

EQT Midstream's PI Implementation Journey Started in 2015 with Proof of Concept Project ONE Gathering Facility – Saturn Compressor Station

YEAR	STATION	ENGINE/COMP UNITS	TAGS
2015	Saturn	7	9287

EQT Midstream's PI Implementation Journey

By End of 2018 Significantly Increased PI Digital Footprint

1. 40 Locations

- 16 Gathering Facilities
- 9 Transmission Facilities
- 1 Storage Facility
- 10 M&R Sites
- 4 Interconnect/Distribution Sites

2. More than 100,000 Tags every Second

3. PI AF Metrics to Date:

- 1397 Analysis Templates
- 16751 Analysis
- 186 Element Templates
- 4173 Elements
- 828 Notification Rule Templates
- 9160 Notification Rules

EQT Midstream's PI Implementation Journey PI System Digital Footprint

Typical Facility Overview

Multiple Data Sources - One Point of Access with PI

EQT Midstream's PI Network Architecture

EQT Midstream PI System Development

Building the Tools for Reliability

Original PI Business Justification was based on savings realized by event prevention primarily for Engine/Compression Assets

Sometimes it's the journey that teaches you a lot about your destination.

Environmental
Compliance Assurance

Gas Quality and Measurement

Ultra Sonic Meters

Odorizers

Chromatographs

Moisture Analyzers

COMPLIANCE

to ter but tyrique i														
En land de	-AL 2	-E 6	Bress		eriter .	B. 1	y North	M	Beef	Sorrel	Teroma	16-8	I Ander - Art	0
												had be		141
Francisco B.J.B. Co.	21 A		O Day	DOM:		beating his	- ESISSE	Delentry	had		bete	nan be	* Open the	THE R
tipod to ter			igner.		Notice 1				Tri)					
B 1 X 2 3 4	rijeranir)													
	_ <					16					W			,
lar .	34	4												
			-	_	_	248	OR FRUITO	i'i-cr wijkes	19460710	-	_	_		
	30	500	red	476	MY	3.6	34.	AUG	529	007	HEV	200	CAUDICAL VE TOTAL	12-RO ROLLING FETAL
DIGNE (1704/9)	\$77	1 167		H E										
(B)(C)(E / 2 TOP (Y)	555	1 10	1 57											150.1
DOMESTICAL	798	1 76	20			_	_					_	30.4	
ENGINE AN TOP OF	11.4	1 100			-								E0.	16.1
DOMESTON OF	679				-								85.	
DOME IN THE (T)	758					_	-	_	_		_	_		
						_	_	_	_	_	_	_	E2.	106.1
(DIGNE #7104F (Y)	900.	0 146.	0 966	7 00	UI								94.0	105.0
	_	_	_	_	_	74.5					_	_		
	341	79	948	APR	186	_M	- M	M/2	187	907	501	260	CALIFICAN VA TOTAL	12-40-80/L90 50%.
PERSONAL PS CARREST (MODES)														
ENGINE #1 >120FF (HOURS)														
ENGINE PAYMENT HOURS		-	o.	2	1	6	0	1	6	6	1	6	0 0	
ENGINE PAYSORPE (HOURS)		-	8	9	1	6	9	1	6	9	1	6		
SHOW IS HER TO HOUSE		-	1	2	-	-	-	-	-	-	-	-		
ENGINE AS A DEST HOURS		2	23	2-	2	2	2	-2	-2	2	2	2	0	
ENGINE AS VERT HOURS		-		2-	-	-	-	-	-	2	-	-		
ENGINE HE NEET HOURS		-			-		2	-	-	-	-			
BIGHT 17 HEFT HOUSE		_	3	2-	-	-	>	-	-	-	-	-	9	
STATE OF LEGIS WORKS		-	1	5	-	-	5	-5	-	-5	-	-	3	
							COTTONOVIAL S							
	_	_	-	_	_	1404057	ALCOHOL:	MILES AND	ALC: THE STATE OF	775	_	_		
	_	_	-	-	-	_	_	-	_	_	_	_		
	149	-	PAR	44	HEY	3A	34	A46	507	120	HEV	360		2 40 43 26 2/64266
ENGINE #10F (mid)	22	15	4		15	_		_	_			_	6.4	
ENGINE F2 OF [mic)	22.	22	0 7										12	14
ENGINE #100 (res)	29.	()	4 30	N.	U(4.5
BIGNE PLOP (Part)					iù .									
ENGINE 45 OF FreeD	29.	6 6	7 4		1.6									
ENGINE ALCO (mich	12.	1 1	1 1	5	100									2.5
													1 24	2.6
ENGINE #7 DF (mic)		6 4												

Scheduled / Condition Based Maintenance

EQT PI Preventive Maintenance / Work Management Data Flow and Infrastructure Diagram

Case Studies and Benefits

Identification & Diagnosis of "Bad Actors"

Using PI Analytics & Notifications to Identify & Diagnose Recurring Issues

Case Study: Engine Load/Speed Control - Improve Equipment Availability & Reliability

Notification Name	Occurances in Last	Occurances in Last Week	Occurances in Last Month	Occurances YTD	Date of Last Occurance	Level
Saturn - Unit 3 - Eng - Speed High Delta Alert	7	64	169	410	10/3/2016 7:26	Level 1
Saturn - Unit 3 - Eng - High Fuel Position % Alert	0	8	11	11	10/1/2016 14:03	Level 1
Saturn - Unit 3 - Comp - Throw High Disch Temp Theo v Actual Alert	0	6	14	275	10/1/2016 21:15	Level 2
Saturn - Unit 3 - Comp - Shutdown Alert	0	4	10	51	9/29/2016 20:15	Level 1
Saturn - Unit 3 - Comp - Low Speed Alert	0	2	4	17	10/1/2016 11:25	Level 3
Saturn - Unit 3 - Eng - Load % Alert	0	1	1	6	9/29/2016 19:08	Level 2

Background

- Frequent Deviations Indicate Underlying Issues
- Identifying & Detecting Correlation of Deviations Improves Effectiveness of Diagnostics
- Prior to PI Limited Visibility into Assets

Solution

- Leverage PI Analytics to Monitor Critical Parameters
- Develop PI Notifications to Alert & Track Deviations
- Reliability Review of "Bad Actors"

- Reduced Identification & Troubleshooting Time
- Reduce Repeat Shutdowns
- Eliminate Parts Consumption Replace to Troubleshoot

Analysis of Trends & Operational Issues Using Pl Analytics & Notifications to Detect & Prevent Process Upsets

Background

- EQT Midstream Transports "Wellhead" Gas with High Concentration of C3+ Hydrocarbons
- Hydrates Can Form in "Heavy" or "Wet" Gas Applications
- Hydrates Can Interrupt/Block Gas Flow in Piping & Equip.
- Eliminate or Affect Hydrate Formation Line Via:
 - Introduction of Inhibitor/Methanol
 - Change Process to Avoid Hydrate Formation Area

Solution

- Leverage PI Analytics to Predict Hydrate Formation Temperature
- Use PI Notifications to Monitor Process/Hydrate Formation Temperature
- Alert Key Personnel to Potential Hydrate Formation
- Modify Process Accordingly to Avoid Interruptions/Upsets

- Modify Operations in Response to Notifications
- Reduce Operating Pressures to Avoid Hydrate Formation
- Reduced Capacity Vs. Complete Outage
- Minimize Dependency on Hydrate Inhibitor
 - Reduce Costs & Consumption
 - Eliminate Secondary Impacts of Inhibitor

Engineering & Analysis to Maximize Resources

PI Analytics & Notifications to Reduce Field Data Collection Time

Case Study: Compressor Valve Condition – Targeted Use of Resources

High ∆T (Predicted vs. Actual)

Background

- Compressor Valves High Frequency Failure
- · Affect Compressor Performance & Efficiency
- Typically Identified by Equipment Analysts on Weekly/Semi-Weekly Field Analysis
- Equipment Analyst Time Valuable & Limited

Solution

- Leverage PI Analytics to Predict Theoretical Gas Discharge Temperature
- High Deviation in Actual Temp. w/Predicted Indicates Potential Valve Issue
- Condition Based Analysis Vs. Time Based

- Reduce Data Collection Time Equipment Analyst
- Use PI as 1st Tier Approach to Focus Resources
- Repurpose Analyst Time to Other Areas of Condition Monitoring
- Provide Operations With Tools to Detect Issues Prior to Analyst Visit

Data & Trends for Condition Based Maintenance

PI Trends & PI Analytics to Maximize Component Life & Value

Background

- Spark Plug Life Varies by Application/Site
- Secondary Ignition Voltage Leading Indicator of Plug Condition
- Voltage Increases Slowly as Plug Decays Over Time
- Plugs Represent Challenge with Utilizing Condition Monitoring & Maintenance

Solution

- Use PI Vision & Notifications to Trend Increase in Leading Indicator Value
- Integrate PI AF & Maximo to Generate WO at Defined Conditions
- Apply Spark Plug Philosophy to Other, Higher Impact Systems

- Reduce Frequency of Spark Plug Changes
- Eliminate Downtime & Cost of Unnecessary Plug Changes
- PI/Maximo Integration Develop Tracking System for Reliability Analysis
- Foundation to Begin Assessment of Condition Indicators & Application to Overarching Systems

EQT PI ANNUAL TANGIBLE SAVINGS FROM EVENT PREVENTION

Next Steps

JUST DO IT.

Where are We Headed?

Digital Transformation

Data Driven Services

New Services

YOU *CAN'T* JUST DO IT.

Digitally Enabled Operations

Operational Excellence

Cost

Reduction

A Cultural Change: People, Processes, & Technology

A Sustainable PI System Begins With Details

Long Term Vision & Management Support

Support Business Case w/Value

Communicate Strategy

Identify Resources

Utilize PI System as Tool for a Culture Shift

Identify Critical Data & Build Foundation

Data to Support Business Case

Focus on Data Quality & Integrity from Beginning

Develop Manageable Scope and Scale Up

Develop AF to Support Long Term Strategy & Sustainability

Communication & Feedback

Engage Users in Development

Build Tools & Process with Users in Mind

Feedback Loop for System Improvement & Value

Looking Ahead: EQT Midstream & The PI System

Looking Ahead: EQT Midstream & The PI System

The Next Steps in the Journey Towards Digital Business Transformation

I am learning to trust the journey even if I don't understand it.

Enabling Business Transformation with the PI System

Leverage normalized & contextualized OT data to enable a culture of operational excellence and continuous improvement

COMPANY AND GOAL

EQT Midstream provides NG gathering & transmission services. **Desired to transform their business to reduce costs & improve**

revenue by supporting a culture of digital enablement and empowerment coupled with work process redesign

Where are We Headed? Revenue Products Digital Diven Driven Services Product Improvement Innovation Product Improvement Innovation Product Improvement Innovation Operational Excellence Operational Cost Reduction

CHALLENGE

Desire to leverage digital technology to enable operational excellence to deliver transformative business value

- Maximize Throughput
- Optimize Asset Reliability & Availability
- Lower O&M Costs thru cost effective operations & maintenance
- Improve asset integrity and overall safety and environmental performance

SOLUTION

Selected the PI System as a strategic enterprise OT infrastructure to provide the foundation for our business transformation journey

- Initial POC on a compressor station
- Grow capabilities and awareness of the power of the PI System
- SME enablement and empowerment
- Work process redesign leveraging normalized, contextualized data

RESULTS

An estimated Annual Cumulative Tangible Savings from event prevention was estimated at \$1M is now projected to be an annual savings of \$3M by 2020.

- Rollout to 40 locations
- Reduced O&M cost, safety and environmental incidents
- PI AF templates enable rapid scale and SME enablement
- Changing culture and work processed – a true transformation

EPC Real Time Data

EQT Real Time Operations Center

RTOC Goals

- Minimize People on Locations
- Optimize Field Resources
- Enhance Collaboration
- Reduce Inefficiencies & Failures
- Improve Consistency
- Maintain Low Costs

Upstream Direction

- Drilling
- Completions
- Production
- Logistics
 - Water
 - Construction

Drilling – OSIsoft PI System Trial

- 2016 Strategy Developed
 - Focused on resource allocation & data driven decisions
- 2017 Completed 3 Month Trial
 - Resources allocated by OSI and Midstream
 - Completed all trial targets
 - Single EQT resource to develop
- Event Frames Alerts
 - Performance Roadmaps
 - Best Practices
 - Trend changes
 - Failure Analysis Feedback Loop
 - Drilling State Analytics
- Automated Performance Metrics
 - Footage / ROP details
 - On/Off bottom time

Failure Prediction

Torque Fluctuation

- Bit Failure Occurred
- Surface Measurement

Example 1

Example 2

 Target Value Exceeded

Alerts

- RTOC Staff
- Elevated Alerts
- Acknowledge

#OSIsoftUC

#PIWorld

©2018 OSIsoft, LLC

Failure Prevention

Future Additions

- Optimization Design Tool
 - Roadmaps
 - Inefficiencies
 - RT Parameter Guidance
 - Machine Learning
- Failure Analysis
 - Event Alerts
- Robust Data Connections
- Collision Avoidance
- Automated Drilling Tools
 - Live Performance Metrics
 - Drilling Parameters
 - Real Time Engineering Tool

#PIWorld

©2018 OSIsoft, LLC

#OSIsoftUC

Organizational Challenges

- Culture Change
 - · Vendor Buy In
 - Field Personnel
 - Effective Communication Plan
- Managing Issues
 - Power / Facility Interruptions
 - Office Distraction
 - Failures / Hole Problems / NPT
- Data / IT Requirements
 - 24/7 Office & Field Support
 - New Technology / Architecture Solutions
 - Data Speed / Volume Requirements
 - Data Sources
- Field Communications
 - Standardization
 - Reliability
 - Consistency
 - Push / Pull Capabilities
 - Transcripts

Production Engineering & Operations

Historian

Real time data for existing facilities in Cygnet

Analytics

- Development of alarms that require trending or addition computation out of the traditional high/low bounds
- WMO Asset tracking and automated work order creation with real time data
- Condition based maintenance

Optimization

- Reduce downtime when utilizing event frames coupled with Maximo data
- Employing Event Frames to automate artificial lift intervention including but not limited to tubing and plungers
- System volume optimization based on current conditions

Completions RTOC Pilot

- Data Collection
- Scoping Details
 - Chemical Optimization
 - Performance Roadmaps
 - Standardization
 - Basic Failure Prediction

Enabling EQT E&P's RT Operations Center with the PI System

Where energy meets innovation.

Moving from reactive to proactive operations in EQT's E&P to drive transformative business value

COMPANY AND GOAL

Leverage the PI System and partnerships to maintain and improvement upon low development cost model through minimizing people on locations, optimize field resources, enhancing collaboration, reducing inefficiencies & failures, and improving consistency, while minimizing EHS and safety incidents.

CHALLENGE

Main challenges in implementing the RT Operations Center and accomplishing the E&P goals included:

- Cultural Change & Alignment
- · Management of "issues"
- · Data & IT Requirements
- · Remote operations communications

SOLUTION

Leveraged the PI System and experience gained in EQT Midstream to expand into the E&P Division

- Conducted POCs in drilling
- Leverage PI AF to support decisions from new EQT Operations Center
- Developed PI AF templates, analytics, event frames, notifications, and PI Vision displays.

RESULTS

Validated the PI System's ability to support drilling and completions with real-time situational awareness, analytics, and decision support.

- Expanding portfolio of drilling functionality
- Expanding into Production & Completions
- Addressing challenges to enable a full use of the Real-time Operations Center

The Evolution of PI at EQT

- Oscar Smith
- osmith@eqt.com
- Senior Principle Engineer
- EQT Midstream

- Brian Morel
- bmorel@eqt.com
- Director Drilling Engineering
- EQT Production

Questions

Please wait for the microphone before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Download the Conference App for OSIsoft Users Conference 2017

- · View the latest agenda and create your own
- · Meet and connect with other attendees

search OSISOFT in the app store

Merci

谢谢

Спасибо

Danke

Gracias

Thank You

감사합니다

ありがとう

Grazie

Obrigado

Optional: Click to add a takeaway you wish the audience to leave with.