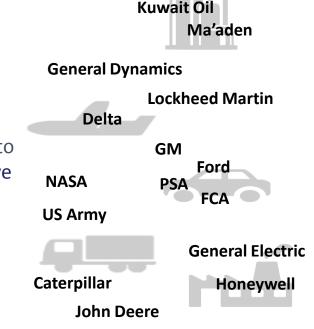
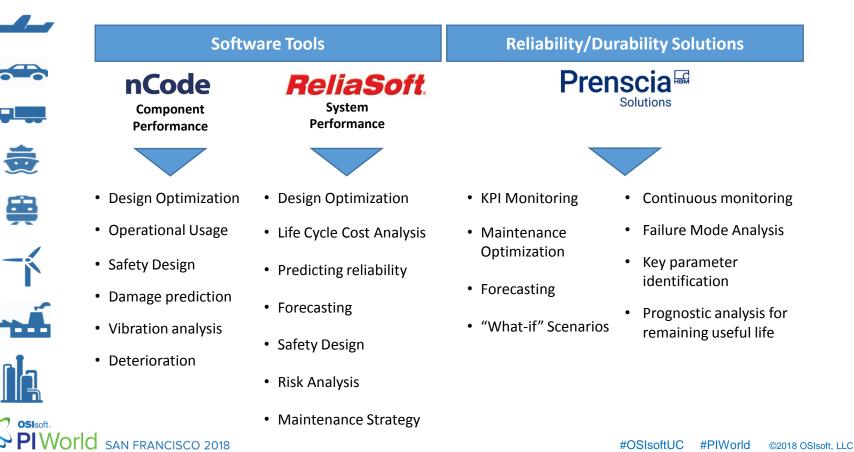
Increasing Reliability for Industrial Applications

Kevin Knill, Director Solutions Architecture Adamantios Mettas, VP Business Development HBM Prenscia Solutions

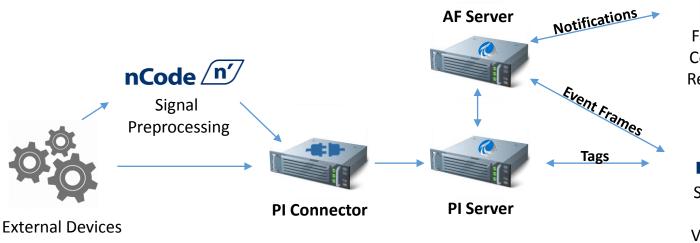

#OSIsoftUC #PIWorld ©2018 OSIsoft, LLC

About Us

Prenscia Solutions is part of a global engineering organization


- A new OSI Partner!
- 6,000 companies served
- 25,000 reliability and durability engineers trained

Empowering decisions through **software and service solutions** to convert engineering data into **actionable information** to improve efficiency, availability, reliability, safety, durability...



Reliability, Durability and Prognostics... Multiple Industries

OSI Interfaced Architecture

ReliaSoft.

Failure Reporting Corrective Actions Reliability Analysis and Predictions

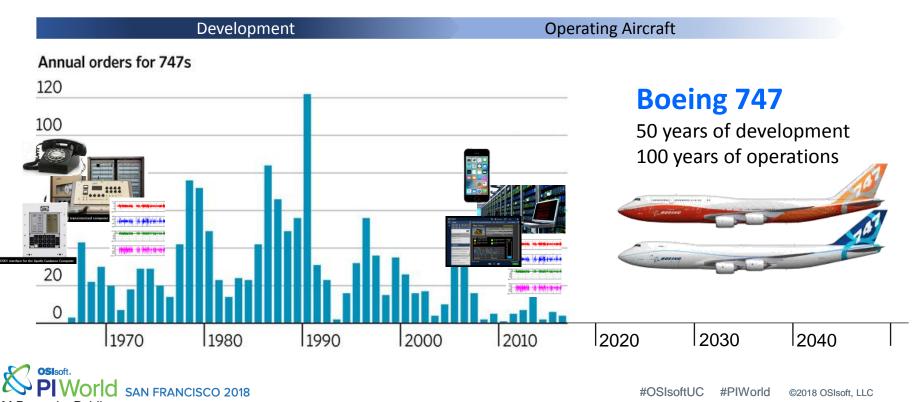
Signal Processing Usage Severity Vibration Analysis Pattern Matching

Our Business

By combining physics of failure with patterns of failure

... our models, analysis and systems provide high confidence information to support

... accelerated development, improved operations, greater safety, risk management, improved asset management, and other key business decisions


Deeper knowledge, superior insight and assurance delivered

Asset Lifecycle Performance

Cradle to grave: from initial design to last use

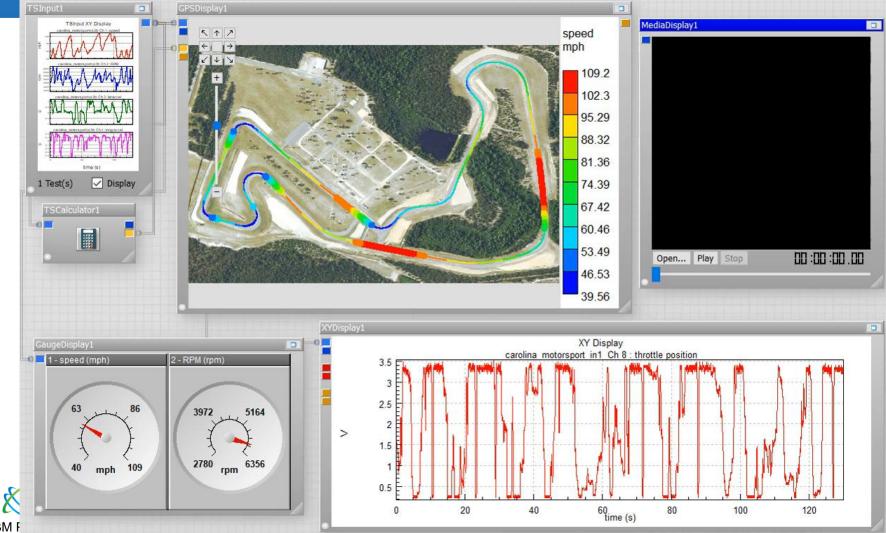
Development Lifecycle

Concept/Design		Develop & Test	Manufacture	Warranty
Reliability Requirements	Component Failure Modes	Operational Loads Testing	Process FMEA	Incident/Failure Reporting
System Usage	Design and Test Loads	Accelerated Life Testing	Control Plans	Root Cause Analysis
	System and Failure Modeling	Reliability Improvemer Z	Vidation	Warranty/Field Data Analysis
	Reliability Baseline	Reliability Growth Testing	00's of Tags	Fleet Monitoring
OSIsoft.	Supplier Selection	Warranty Predictions	Burn-in	
	AN FRANCISCO 2018		#OSIs	coftUC #PIWorld ©2018 OSIsoft,

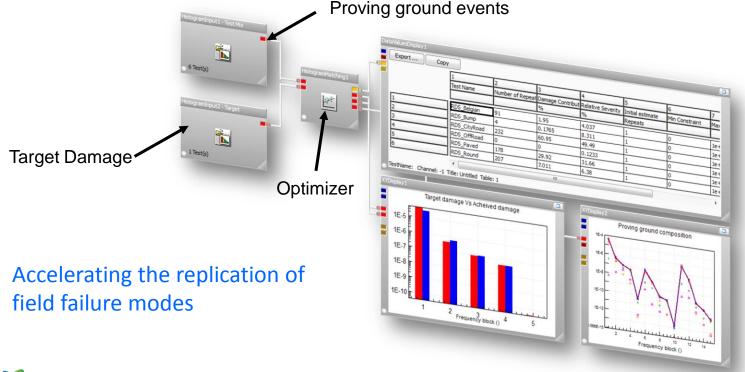
Accelerating Real World Conditions

Optimum proving ground schedule to replicate field failures:

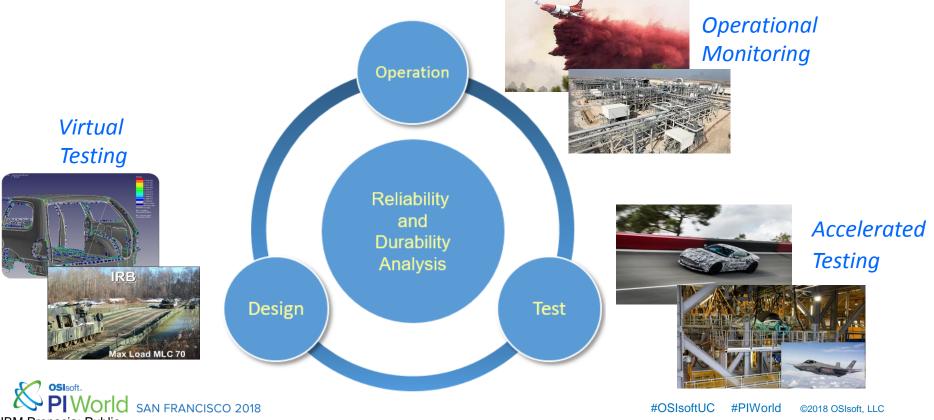
- What surfaces/distances?
- What vehicle weight conditions?
- What road speeds?
- What manoeuvres?


Acceleration factor?

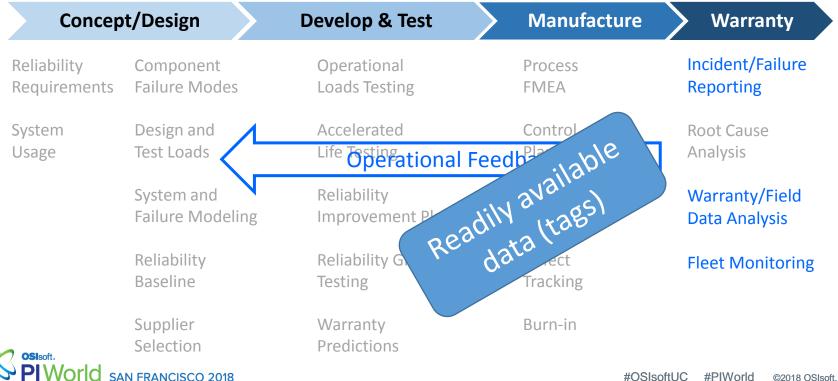
Correlations between proving grounds?



HBM F


Matching Damage to the Real World

HBM Prenscia: Public


#OSIsoftUC #PIWorld ©2018 OSIsoft, LLC

Develop Products for Reliability and Durability

Development Lifecycle

HBM Prenscia: Public

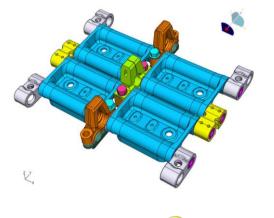
#OSIsoftUC #PIWorld ©2018 OSIsoft, LLC

Understanding what's Important

Delivering more with less!

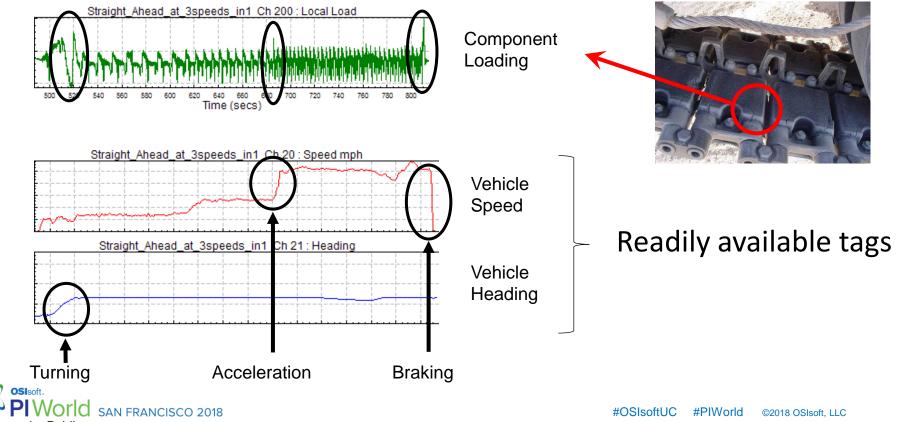
Army Tank originally designed for European theatre

- Needed to operate in other locales
- Significant suspension and track failures observed
 - Understand failure modes first
 - Identify key data influencing failures
 - Then consider redesign



Creative Instrumentation

Bridge 4 Bridges 2,3 Bridge 1 Front of ۲ Tank **Trailing Pin** Leading Pin


CAE Simulation

Embedded Data Acquisition Device

Deriving Damage from Available Tags

Operations Lifecycle

Planning/Concept	Design	Commissioning	Operations & Maintenance	
Reliability/availability requirements	Design alternatives Availability predictions	Maintenance plan creation	Throughput forecasting Asset monitoring / bad actors	
Environmental / usage conditions HAZOP	and system modeling Spare parts Life cycleOperational Feedback analysis Risk based inspection		Root cause analysis Condition/performance based	
Safety integrity level (SIL) allocation	Throughput simulation Identify critical equipment	Plan	maintenance Availability modeling Spare parts forecasting SIL verification Risk based inspection	
	Safety instrumented system (SIS) design and SIL assessment			

Challenge to obtain accurate Operational Data

Problem

Want to correlate vehicle speed to damage

Poor correlation observed

Speed measured here but needed here

Approach

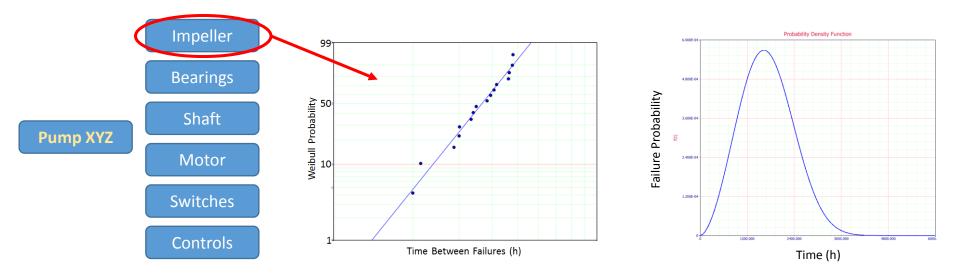
- Identify Neutral-Neutral cycles
- Meaningful cycles (Speed > 5mph, Duration > 15s)
- Apply machine learning (ML) to vehicle bus parameters
- Apply appropriate physics

Ch 33 . ReadSpeed . Read Acceleration Ch 33 . ReadSpeed . Read Acceleration Ch 33 . ReadSpeed . Read Acceleration Ch 34 . ReadSpeed . Read Acceleration Ch 35 . PetEgl.oad . dtiPercent Accelerator Petal Position. Seconds) Ch 35 . PetEgl.oad . dtiPercent Engine Load Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 36 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 37 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 38 . ReadSpeed . Read Accelerator Petal Position. Seconds) Ch 38 . ReadSpeed . Read Accelerator Position. Seconds) Ch 39 . ReadSpeed . Read Accelerator Position. Seconds) Ch 30 . ReadSpeed . Read Accelerator Position. Seconds) Ch 30 . ReadSpeed . Read Accelerator Position. Seconds) Ch 30 . ReadSpeed . Read Accelerator Position. Seconds) Ch 30 . ReadSpeed . Read Accelerator Position. Seconds) Ch 30 . ReadSpeed . Read Accelerator Position. Seconds) Ch 30 . Read Position. Seconds) Ch 30 . Read Position. Seconds) Ch 30 . Read Position. Seconds Ch 30 . Read Position. Seconds) Ch 30 . Read Position. Seconds) Ch 30 . Read Position. Seconds Ch 30 . Read Position. Seconds) Ch 30 . Read Position. Seconds Ch 30 . Read Position.

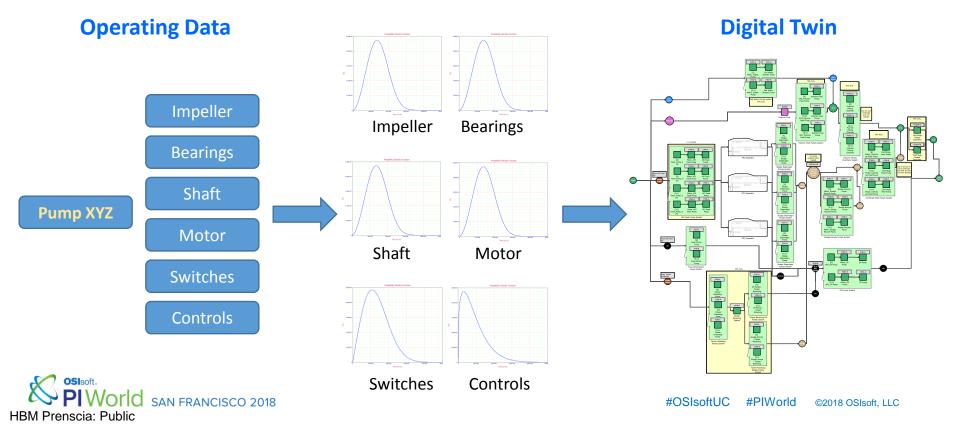
Results

Correlated high/low range to vehicle bus

- 80% accuracy with ML
- 95% accuracy with ML and physics


Operations Lifecycle

Planning/Concept	Design	Commissioning	Operation & Maintenance	
Reliability/availability	Design alternatives	Maintenance plan creation	Throughput forecasting	
requirements	Availability predictions	Spare parts predictions	Asset monitoring / bad actors Root cause analysis Condition/performance based maintenance	
Environmental / usage conditions	and system modeling Life cycle cost (LCC) analysis	Risk based inspection Plan		
HAZOP				
Safety integrity level (SIL) allocation	Throughput simulation Identify critical		Availability modeling	
	equipment		Spare parts forecasting	
	Safety instrumented		SIL verification	
	system (SIS) design and SIL assessment		Risk based inspection	



#OSIsoftUC #PIWorld ©2018 OSIsoft, LLC

Modeling Failures ... Subsystem Level

Building a Digital Twin... Representative of System

Digital Twins ... Help Decision Making

Plant:	WWT-1	Location:	North Dakota		
RANK	System	RCI	3 months	6 months	12 months
1	Pump XYZ	61	No Change	Better	Worse
2	Centrifuge	133	Better	No Change	No Change

Ranking

- Likelihood
- Severity

Measure and Report

- Detect emerging problems
- Identify trends

Actionable Information

- Predict failures
- Optimize availability
- Assess improvement

Summary

HBM Prenscia: Public

Providing tools, analysis, people and solutions to enhance system reliability, durability and safety

CHALLENGE

Extend asset life Increase system availability Improve product designs Accelerate product testing

SAN FRANCISCO 2018

SOLUTION

Understand why assets fail Prioritize the failures Focus on key failure modes Prudent system monitoring

- Advanced analysis to derive insight
- Reliability assessment to understand impact

RESULTS

On average 10% reduction in maintenance costs

Comparable improvement in system availability

More reliable products delivered to market faster

About the Presenters

SAN FRANCISCO

- Kevin Knill
- kevin.knill@hbmprenscia.com
- Director Solutions Architecture
- HBM Prenscia Solutions
- Adam Mettas
- <u>Adam.mettas@hbmprenscia.com</u>
- VP Business Development
- HBM Prenscia Solutions

Questions

Please wait for the **microphone** before asking your questions

State your name & company

Please remember to...

Complete the Online Survey for this session

Download the Conference App for OSIsoft Users Conference 2017

- View the latest agenda and create your own
- · Meet and connect with other attendees

Google Play

App Store

search OSISOFT in the app store

Grazie

Obrigado

Optional: Click to add a takeaway you wish the audience to leave with.

#OSIsoftUC #PIWorld ©2018 OSIsoft, LLC