Security and Hardening of Your PI System

Lubos Micoch, Cyber Security Advisor

Agenda

- 1. Prologue
- 2. Sliding Scale of Security
- 3. The Big 4 of Cyber Security
- 4. Cyber Security Data Sheets
- 5. Call to Action

But my mission is just...

Attacker viewpoint

Small electricity generator

Pathway to bulk electric system

IoT manufacturer

Platform for botnet

Non critical process plant

Exploit development system

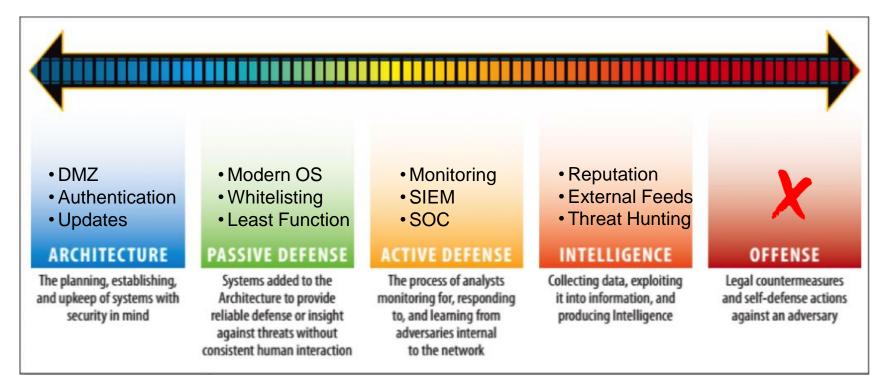
ICS systems integrator

Malware distribution channel

Three Laws of SCADA Security

- 1. Nothing is secure
- 2. All software can be hacked
- 3. Every piece of information can be an attack

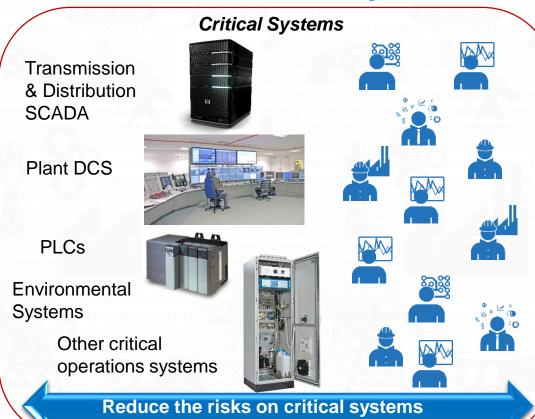
Ginter, Andrew (2016) SCADA Security: What's broken and how to fix it.


Threat Spectrum

Threat	Resources	Attacks
Nation States Military Grade	Nearly Unlimited	Autonomous Targeted Malware
Intelligence Agencies	Professional	Remote Control 0-Day Vulnerabilities
Hacktivists	Skilled Amateur	Remote Control Exploit Permissions
SCADA Insiders	Amateur	Exploit Permissions
Organized Crime	Professional	Malware Known vulnerabilities
Corporate Insiders	Amateur	Exploit Permissions

Ginter, Andrew (2016) SCADA Security: What's broken and how to fix it.

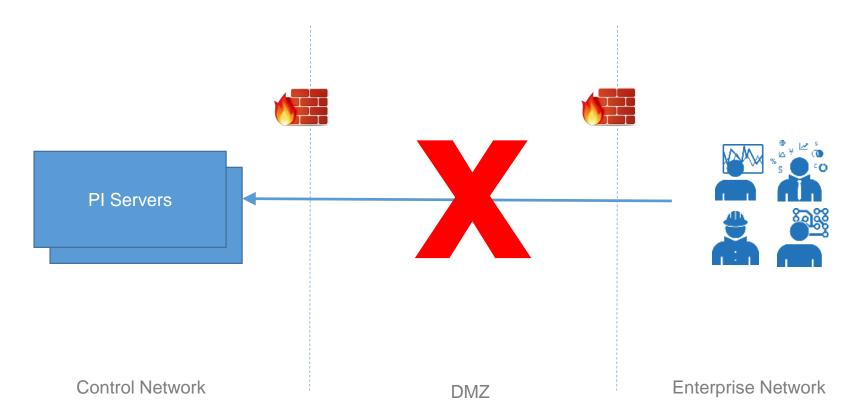
Sliding Scale of Security

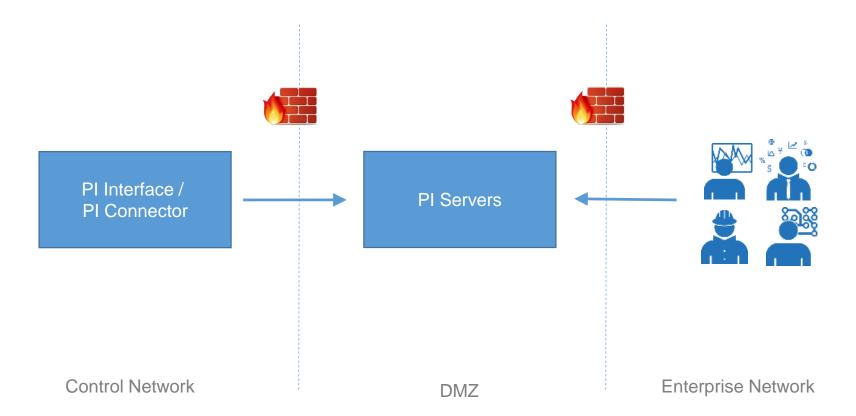


The Sliding Scale of Cyber Security - Robert M. Lee

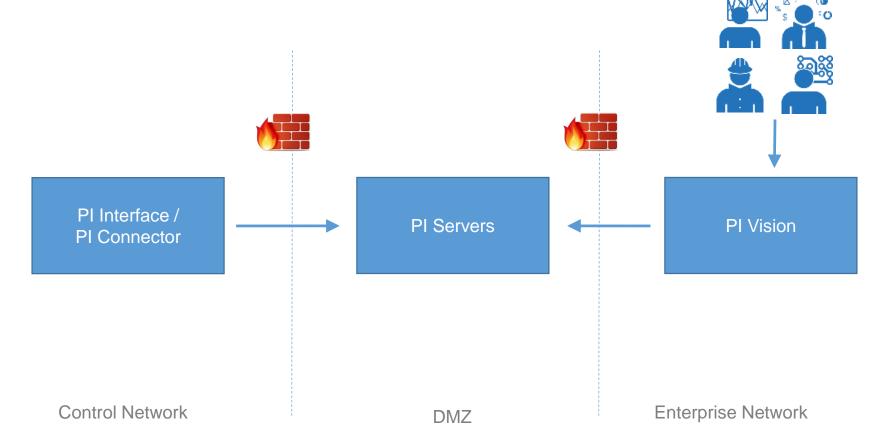
https://www.sans.org/reading-room/whitepapers/ActiveDefense/sliding-scale-cyber-security-36240

Fundamental PI System Security Advantage

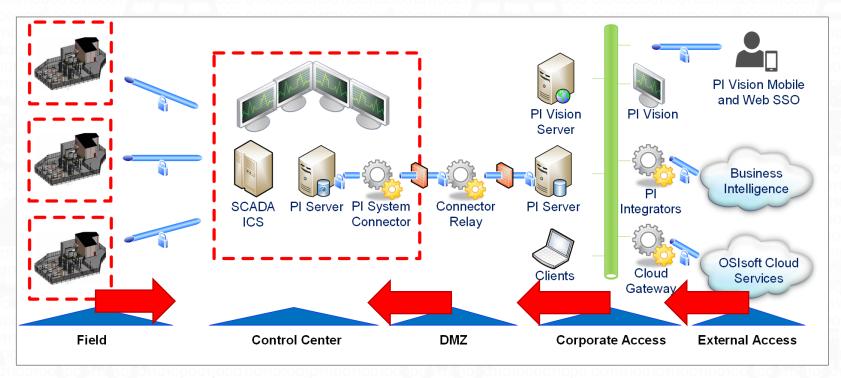

Limits direct access to critical systems while expanding the use of information.


Security Perimeter

Undesirable Topology



Good Topology

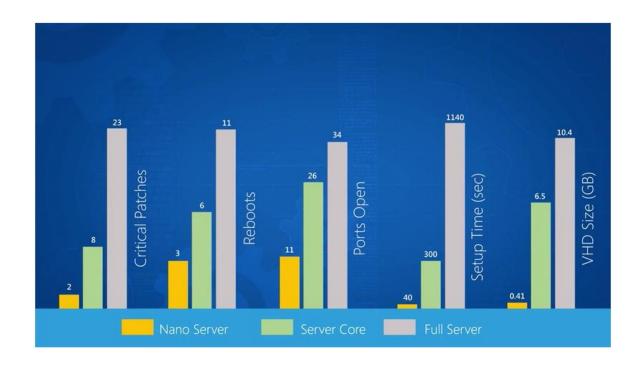


Better Topology

PI System 2019 Reference Architecture

NERC CIP, NIST 800-53, and NIST 800-82

Reduce Surface Area of the Platform

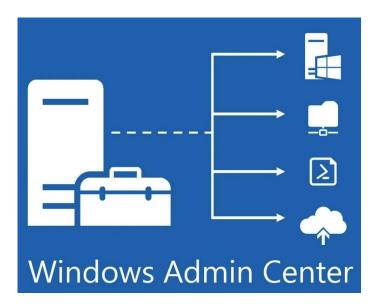

Windows Server Core

Less installed, less running (No GUI applications) Fewer open ports Less patching Less Maintenance Lower TCO

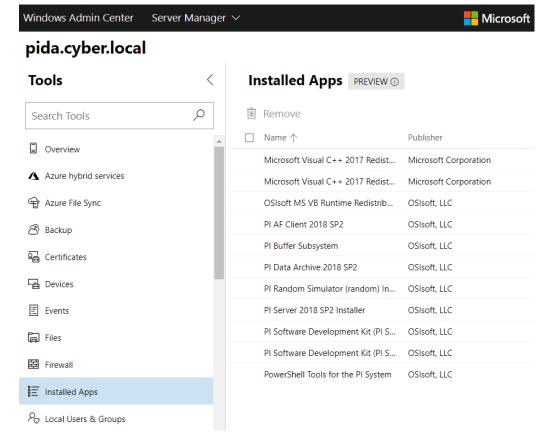
.... More secure

Supported OSIsoft products:

PI Data Archive PI AF Server PI Vision PI Web API PI Connectors



Microsoft Mechanics. "Exploring Nano Server for Windows Server 2016 with Jeffrey Snover."


Online video clip. YouTube, 10 Feb. 2016

Reduce Surface Area of the Platform

Free, browser-based app for managing Windows Servers (including Server Core)

Whitelisting

All Applications: A, B, C

Blacklist: Allow All, Deny A, C

Whitelist: Deny All, Allow B

Blacklisting

Whitelisting

All Applications: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, ...

Blacklist: Allow All, Deny A, C, E, F, G, H, I, J, K, L, M, N, O, P, ...

Whitelist: Deny All, Allow B, D

Whitelisting – using built-in Windows features

Whitelisting with Windows Defender Application Control

- Used to be called Device Guard
- Available since Windows 10 / Server 2016 (incl. Core)

Whitelisting with AppLocker

- Can be used in tandem with WDAC
- Available on older OS version, but doesn't work in Server Core

Whitelisting PI applications based on catalog files

- OSIsoft provides a Catalog file for products that use unsigned third-party files

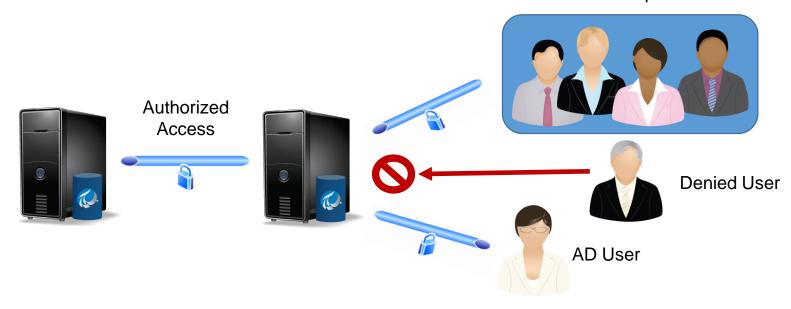
Upgrade your software

OSIsoft is consistently:

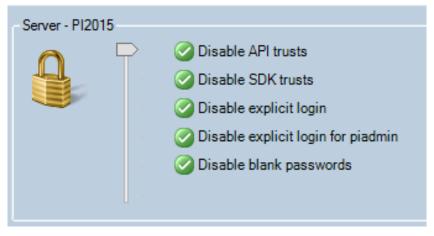
Implementing compiler flags as they become available

Applying least privileges to services

Adding support for Windows Core systems



Role Based Access: Leverage Windows Integrated Security

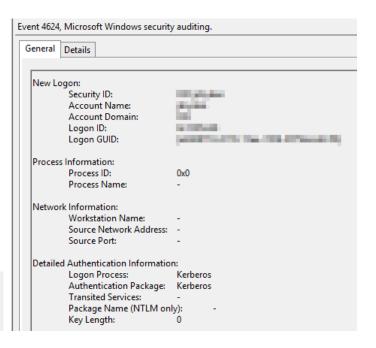

Less work for administrators: Active Directory provides SSO and Identity and Access Management.

AD Group

Authentication Management

Enforce the strongest authentication method server-side.

PI API trusts can be disabled with the installation and configuration of the PI API 2016 for WIS and later

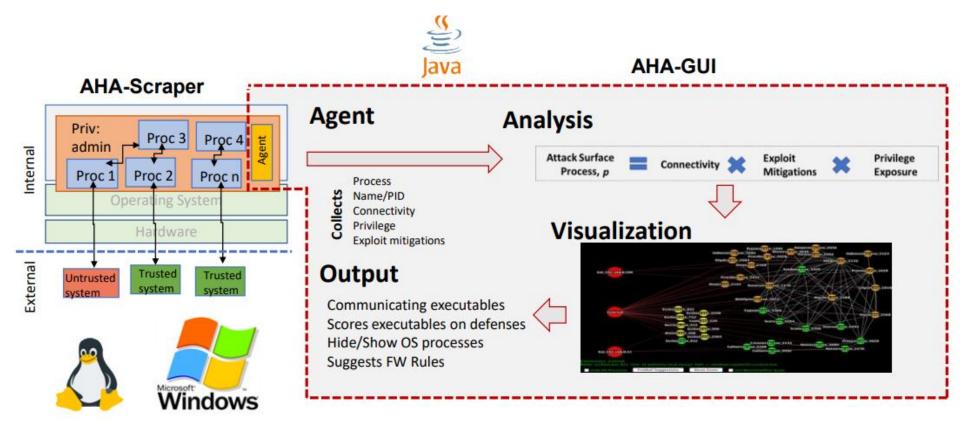

Audit Connections

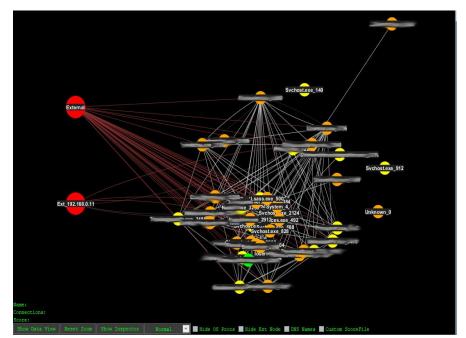
WIS provides connection auditing through Security event logs

PI Message Logs provide connection auditing (Message ID: 7082)

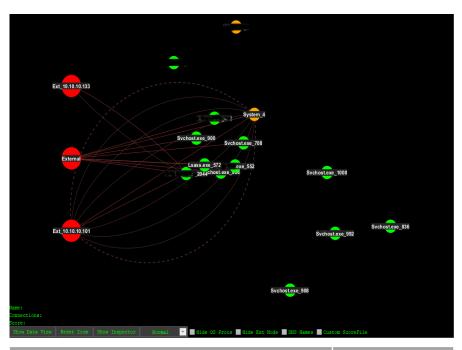
PI Data Archive connection history

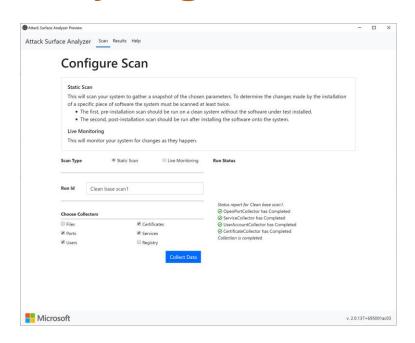
Successful login ID: 44. Address: Name: PISDKUtility.exe(17636):remote. Identity List: piadmins | pidemo | piusers | PIWorld. Environment Username: Method: Windows Login (SSPI,Kerberos,HMAC-SHA1-96,Kerberos AES256-CTS-HMAC-SHA1-96,256)


Analyzing Attack Surface #1


AHA - AttackSurface Host Analyzer

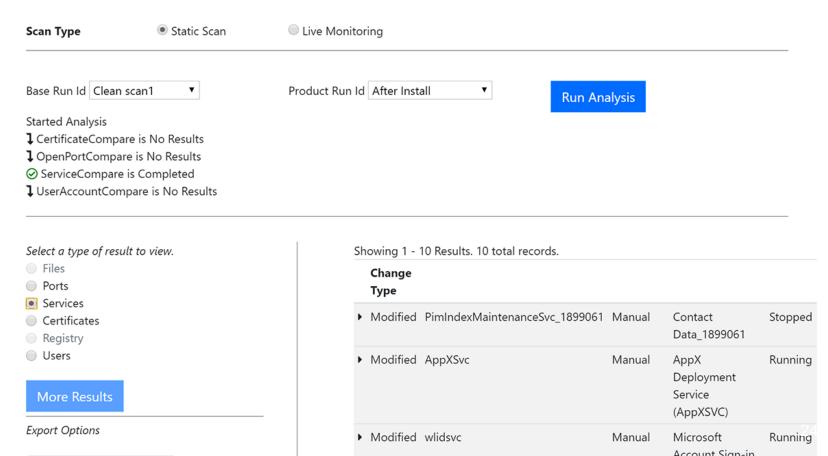
site: https://aha-project.github.io/


COCC: https://github.com/AHA-Project/AHA-Scraper-Winhttps://github.com/AHA-Project/AHA-Scraper-Linhttps://github.com/AHA-Project/AHA-GUI



Windows Server 2008 R2	Mean Score
External Attack Surface	9.5%
Internal Attack Surface	8.2%

Windows Server 2016 Core	Mean Score
External Attack Surface	80%
Internal Attack Surface	80%


Analyzing Attack Surface #2

Microsoft Attack Surface Analyzer 2.0

Site & code: https://github.com/Microsoft/AttackSurfaceAnalyzer

Analyze Results


```
Administrator: Command Prompt
                                                                                                                 П
C:\AsaCli-win10-2.0.137\AsaCli-win10-2.0.137.695001ac03>res\AttackSurfaceAnalyzerCli.exe<u>collect --user --runid user1</u>
[15:34:09 INF] AttackSurfaceAnalyzerCli v.2.0.137+695001ac03
[15:34:10 INF] This application collects usage data to help us improve Attack Surface Analyzer.
[15:34:10 INF] For our privacy policy visit: https://github.com/Microsoft/AttackSurfaceAnalyzer/blob/master/PRIVACY.md.
[15:34:10 INF] To disable telemetry run 'AttackSurfaceAnalyzerCli.exe config --telemetry-opt-out true'.
[15:34:10 INF] Use embedded filters.
[15:34:10 INF] Loaded filters: Embedded
[15:34:10 INF] Begin user1
[15:34:11 INF] Starting 1 Collectors
[15:34:11 INF] Starting UserAccountCollector.
[15:34:11 INF] Completed UserAccountCollector in 00h:00m:00s:696ms
[15:34:11 INF] End: UserAccountCollector
[15:34:11 INF] Attack Surface Analyzer Completed.
C:\AsaCli-win10-2.0.137\AsaCli-win10-2.0.137.695001ac03>asalaunch collect --user --runid user2
C:\AsaCli-win10-2.0.137\AsaCli-win10-2.0.137.695001ac03>res\AttackSurfaceAnalyzerCli.exe collect --user --runid user2
[15:35:25 INF] AttackSurfaceAnalyzerCli v.2.0.137+695001ac03
[15:35:26 INF] Use embedded filters.
[15:35:26 INF] Loaded filters: Embedded
[15:35:26 INF] Begin user2
[15:35:26 INF] Starting 1 Collectors
[15:35:26 INF] Starting UserAccountCollector.
[15:35:26 INF] Completed UserAccountCollector in 00h:00m:00s:456ms
[15:35:26 INF] End: UserAccountCollector
[15:35:26 INF] Attack Surface Analyzer Completed.
C:\AsaCli-win10-2.0.137\AsaCli-win10-2.0.137.695001ac03>asalaunch compare
C:\AsaCli-win10-2.0.137\AsaCli-win10-2.0.137.695001ac03>res\AttackSurfaceAnalyzerCli.exe compare
[15:35:40 INF] AttackSurfaceAnalyzerCli v.2.0.137+695001ac03
[15:35:40 INF] Comparing user1 vs user2
[15:35:40 INF] Begin : UserAccountCompare
[15:35:40 INF] Found 1 Created
[15:35:40 INF] Found 0 Deleted
[15:35:40 INF] Found 0 Modified
[15:35:54 INF] Output written to: output.html
[15:35:54 INF] Attack Surface Analyzer Completed.
C:\AsaCli-win10-2.0.137\AsaCli-win10-2.0.137.695001ac03>
```


Material Safety Data Sheets

MATERIAL SAFETY DATA SHEET

Trade Name: ACETONE

Chemical Family: Acetone

Formula: C3 H6 O

FIRE AND EXPLOSION DATA

Flashpoint & Method: 0% F (TCC)
Flammable Limits: LFL 2.0, UFL 13.0

Extinguishing Media: water spray, dry chemical, CO2, alcohol foam

Special equip. & procedures: Self contained breathing apparatus & complete protective clothing. Acetone is extremely flammable, any source of ignition will ignite it. Vapor is extremely explosive.

REACTIVITY DATA

Conditions Contributing to Instability: Heat, Sparks & Open Flame Incompatible Substances: Acids, Oxidizing materials, Alkalis, Amines, Potassium T-Butoxide, Alkanolamines, Ammonia, Aldehydes, Chlorinated compounds. Hazardous Decomposition Products: Carbon Monoxide, Carbon Dioxide Hazardous Polymerization: will not occur.

PREVENTATIVE MEASURES

<u>Skin</u>: Wear impervious gloves (butyl rubber), coveralls and safety footwear.
<u>Eves</u>: Chemical proof goggles or full face respirator if vapors cause eye discomfort.

Incestion: Wash thoroughly before consuming food stuffs.

<u>Inhalation</u>: Use only in well ventilated areas or use NIOSH approved respiratory protection with organic vapor cartridges.

CONTROL MEASURES AND PRECAUTIONS

Keep container tightly closed. <u>DO NOT</u> consume food, drink or tobacco in work or material storage areas. Flame or any source of ignition is to be kept away from this product. Use caution and personal cleanliness to avoid skin and eye contact. Avoid breathing vapors.

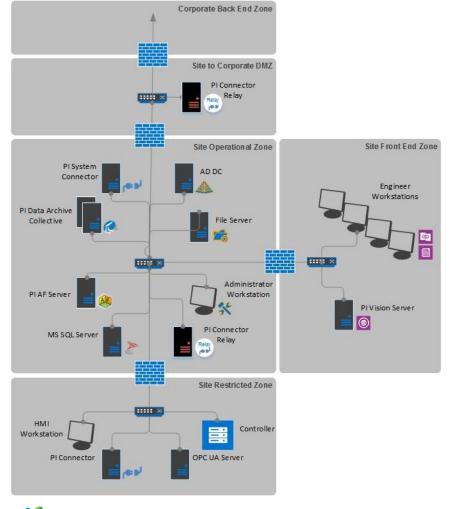
Cyber Security Data Sheets

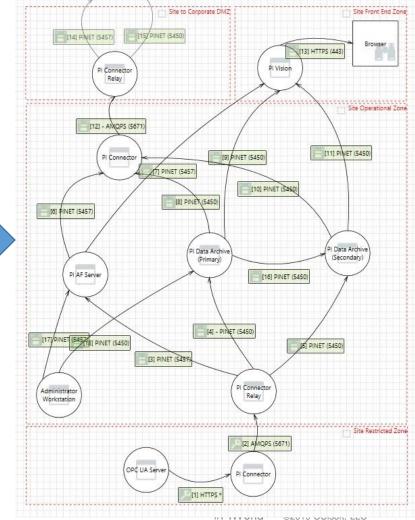
Cyber Security Technical Assessment Methodology

Risk Informed Exploit Sequence Identification and Mitigation, Revision 1

>>> Get the full TAM report

Michael Thow mthow@epri.com
Matt Gibson mgibson@epri.com


CSDS part 1


TAM Step 1

 Characterize Attack Surface and identify Exploit Sequences

CSDS part 1 – Attack Pathways

CSDS Part 1c Attack Pathways arate instruction sheets for how to complete the wo

	Refer to the separate instruction sneets for now to complete the workbook.				
Manufacturer		Device Name	CSDS ID		
OSIsoft		PI Data Archive	CSDS1		

Attack Pathway	Attack Vector	Physical Interface	Communications	Available Logical	Interface ID	Interfacing	Attack Pathway Description	
Number	Protocol Port Numbers Connection		Connections					
A01	Direct Network Access	RJ-45	TCP/IP		CSDS1-RJ-45-1		Windows Update patch data	
A02	Direct Network Access	RJ-45	TCP/IP		CSDS1-RJ-45-2		PI Backup data	
A03	Direct Network Access	RJ-45	TCP/IP		CSDS1-RJ-45-3		PowerShell remoting traffic	
A04	Direct Network Access	RJ-45	TCP/IP		CSDS1-RJ-45-4		PINet requests	
A05	Direct Network Access	RJ-45	Ethernet/IP		CSDS1-RJ-45-5		General network traffic	
A06	Direct Network Access	Hard Drive	Operating System		CSDS1-Hard Drive-1		Windows backup image restoration	
A07	Direct Network Access	Hard Drive	Operating System		CSDS1-Hard Drive-2		Windows audit events	
A08	Direct Network Access	Hard Drive	Operating System		CSDS1-Hard Drive-3		System boot image	
A09	Direct Network Access	Hard Drive	Operating System		CSDS1-Hard Drive-4		OS and application files stored on disk	
A10	Portable Media &	USB	USB		CSDS1-USB-1		Removable media	
	Equipment							
A11	Direct Network Access	RJ-45	UDP		CSDS1-RJ-45-6		Upstream time data	
A12	Direct Physical Access	Faceplate Knob or Button	Operating System		CSDS1-Faceplate Knob or Button-1		Physical access to host server	
A13	Direct Network Access	RJ-45	TCP/IP		CSDS1-RJ-45-7		Windows Integrated Security (NTLM, Kerberos) data	

EPRI TAM – Attack Surface Characterization

Objective Criteria that Bounds and Groups Exploit Objectives

- 28 Classes of Exploit Objectives
- Based On:
 - Direct Action
 - Critical Data
- Bounding
- Complete

- 5 Attack Vectors
 - Wired Network
 - -Wireless Network
 - Portable Interfaces
 - Physical Access
 - -Supply Chain
- Determine Specific Attack Pathways
- Determine Specific Exploit Mechanisms

Exploit Sequence = Exploit Objective + Attack Pathway + Exploit Mechanism

An exploit sequence is an attack pathway and exploit mechanism that allows an attacker to achieve an exploit objective.

Exploit Sequence Example

Exploit Objective:

Modify time-series data in transit

Attack Pathway: Wired connection

Exploit Mechanism: MITM

CSDS part 1 – Exploit Sequences

				_			
			CSDS Part 1d Identify Exploit Sequences				
		Refer	to the separate instruction sheets for how to complete the workbook.				
Manufacturer	Device Name	e	CSDS ID				
4 OSIsoft PI Data Archive 2018 SP2 PIDA2018SP2							
			CSDS Part 1d: Exploit Sequences				
Exploit Objective			Description Ob		Applies?	Applicable Attack Pathway(s)	Exploit Mechanism Number and [
			Exploit Objectives Associated with Direct Action Against t	he Asset			
Component Enable/Disable	ement-Immedia	ite	Means exist to immediately initiate or halt component operation.	E01	NO		
Component Disablement- Delayed			Means exist to degrade support systems or the environment for component operations, eventually resulting in component disablement.	E02	NO		
Denial of Service (DOS)			Means exist to interfere with the normal operation of the component by presenting false demands for component interaction at a component digital port.	E03	YES	A2	A2.X01 - Expensive queries repeatedly e
			Means exist to inject or install unauthorized and undetected program content on the component that does not constitute an alteration of existing authorized program content.	E04	NO		
3			Exploit Objectives Associated with the 6 Critical Data	ypes			
4	Theft	In Transit	Means exist to access and record operational process data while being transmitted to or from the component, including process variables, control signals, process element state information, alarms, and process data logs. Transmission includes digital data communication and the use of portable storage media.	E05	YES	A2	A2.X01 - Attacker intercepts PI data in tr
Out and the sell Breakers Bade		At Rest	Means exist to access and record operational process data while stored on the component, including process variables, control signals, process element state information, alarms, and process data logs.	E06	YES	A1,A2	A1.X01 - Attacker steals archive, queue of A2.X01 - Attacker reads data with PINET
Operational Process Data	Alteration	In Transit	Means exist to alter operational process data while being transmitted to or from the component, including process variables, control signals, process element state information, alarms, and process data logs. Transmission includes digital data communication and the use of portable storage media.	E07	YES	A2	A2.X01 - Attacker modifies PI data in tra
		At Rest	Means exist to alter operational process data while stored on the component, including process variables, control signals, process element state information, alarms, and process data logs.	E08	YES	A2	A2.X01 - Attacker modifies data with PIF
		In Transit	Means exist to access and record program/configuration content that is installed and/or modified by the manufacturer while being transmitted to or from the component, including operating system (OS), firmware, tool software, and	E09	YES	A1,A2	A1.X01 - Steal PI configuration informati A2.X01 - Steal PI configuration information

CSDS part 2

TAM Step 2

 Engineered Security Control Methods scoring and allocation

Allocating Engineered Security Control Methods

Exploit Objective:

Modify time-series
data in transit

Attack Pathway: Wired connection

Exploit Mechanism: MITM

Security Control
Method:
Native PINet
transport
security

Set Target Levels for:
Protection
Detection
Response & Recovery

Calculate efficacy based on:
Protection
Detection
Response & Recovery
Persistence
Implementation cost

Allocating Engineered Security Control Methods

CSDS Part 2a Security Control Method Identification and Scoring

Refer to the separate instruction sheets for how to complete the workbook.

Manufacturer	Device Name	CSDS ID
OSIsoft	PI Data Archive 2	PIDA2018SP2

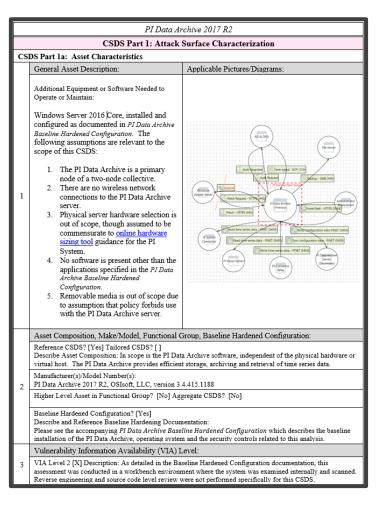
Cyber Security Co	ontrol Methods		
CMID	Method Type	CMID-Description	Control Method
PIDA2018SP2-M-01	Engineered	PIDA2018SP2-M-01-PI Backup	PI Backup
PIDA2018SP2-M-02	Engineered	PIDA2018SP2-M-02-PI Data Archive Server Authentication Policy	PI Data Archive Server Authentication Policy
PIDA2018SP2-M-03	Engineered	PIDA2018SP2-M-03-PI Data Archive Database Security Access Control Lists	PI Data Archive Database Security Access Control Lists
PIDA2018SP2-M-04	Engineered	PIDA2018SP2-M-04- PINET Transport Security	PINET Transport Security
PIDA2018SP2-M-05	Engineered	PIDA2018SP2-M-05-PI Tuning for Expensive	PI Tuning for Expensive Query

Allocating Engineered Security Control Methods

Security	y Effectivene	ss Score	Implementation Burden				Method Efficacy		
Protect	Protect Detect Respond & Recover		Initial	O&M	Value	Burden	Protect	Detect	Respond & Recover
1.13	1.13	2.01	Medium	Low	1.5	Medium	3	3	4
2.01	1.13	1.13	Medium	Medium	2	Medium	4	3	3
2.01	1.13	1.13	Low	Low	1	Low	5	4	4
2.01	1.51	1.13	Medium	Medium	2	Medium	4	3	3

Allocating Engineered Security Control Methods

Manufacturer	Device Name	CSDS ID		
OSIsoft	PI Data Archive 2018	PIDA2018SP2		

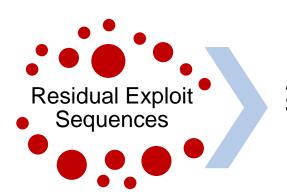

		Combined Security Effectiveness Score				Target Levels		els	
Exploit Sequence	Attack Pathway	Protect	Detect	R/R	Residual Present?	Protect	Protect Detect R/R		Exploit Sequence Basis/Description
E03.A2.X01	A2	2.26	1.13	0.00	Yes	С	C	С	Expensive queries repeatedly executed.
E05.A2.X01	A2	2.01	1.51	0.00	Yes	С	С	С	Attacker intercepts PI data in transit.
E06.A1.X01	A1	0.00	0.00	0.00	Yes	С	С	С	Attacker steals archive, queue or snapshot files.
E06.A2.X01	A2	4.02	1.51	0.00	Yes	С	С	С	Attacker reads data with PINET requests.
E07.A2.X01	A2	2.01	1.51	2.01	Yes	С	С	С	Attacker modifies PI data in transit.
E08.A2.X01	A2	3.01	0.00	2.01	Yes	С	С	С	Attacker modifies data with PINET requests.
E09.A1.X01	A1	2.01	1.13	0.00	Yes	С	С	С	Steal PI configuration information in transit from PI backup data.

Cyber Security Data Sheets

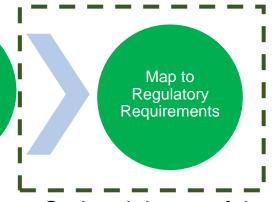
Structured Security Documentation

Forward looking with focus on:

- Modern Platform
- Recommended Architecture



TAM Step 3


- Mitigate residual Exploit Sequences
- Shared Security Control Methods

Residual Exploit Sequences are expected!

Allocate Shared Security Control Methods Asset protected

Optional, but useful:

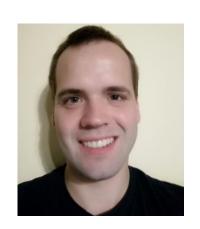
- RG 5.71
- NEI 08-09
- NERC CIP
- NIST 800-53

Cyber Security Data Sheets can be delivered by vendors as part of the supply chain

Step 1 & 2 by EPRI, Vendors, and other Stakeholders

CSDS Organization								
Step 1: Attack Surface Characterization	Work Product							
Part 1a: Asset Characteristics	MC M. 1.1							
Part 1b: Target Installation Configuration and Data Flow	MS-Word document							
Part 1c: Attack Pathways	MS-Excel spreadsheet							
Part 1d: Exploit Mechanisms for Applicable Classes of Exploit Objectives	MS-Excel spreadsheet							
Step 2: Engineered Security Control Method Identification, Efficacy, and Allocation								
Part 2a: Engineered Security Control Method Identification and Efficacy	MS-Excel spreadsheet							
Part 2b: Engineered Security Control Method Allocation	MS-Excel spreadsheet							

Contact us to obtain PI Data
Archive and PI Vision
Cyber Security Data
Sheets.


We'd love to hear your feedback!

Contact us for more information...

Lubos MIcoch Imlcoch@osisoft.com

Cyber Security Advisor

OSIsoft, LLC

Useful links

- OSIsoft PI System Cyber Security Hub
- SANS Sliding Scale of Cyber Security
- Windows Server 2019 Server Core vs. Desktop Experience (GUI) Explained & Compared
- Hello, Windows Admin Center!
- AttackSurface Host Analyzer (AHA)
- Microsoft Attack Surface Analyzer
- EPRI Cyber Security Technical Assessment Methodology: Risk Informed Exploit Sequence Identification and Mitigation, Revision 1

KEA LEBOHA

KÖSZÖNÖM

БЛАГОДАРЯ

ТИ БЛАГОДАРАМ $\stackrel{>}{\xi}$

TAK DANKE \$\frac{1}{2}\$

HATUR NUHUN

OSIsoft.

MULŢUMESC

ESKERRIK ASKO

ХВАЛА ВАМ

TEŞEKKÜR EDERIM

DANK JE

AČIŪ SALAMAT MAHALO IĀ 'OE TAKK SKAL DU HA

GRAZZI PAKKA PÉR

PAXMAT CAFA

ありがとうございました
SIPAS JI WERE TERIMA KASIH
UA TSAUG RAU KOJ
ТИ БЛАГОДАРАМ
СИПОС

ДЗЯКУЙ

ĎAKUJEM

MATUR NUWUN

Questions?

Please wait for the **microphone**

State your name & company

Please remember to...

Complete Survey!

Navigate to this session in mobile agenda for survey

