

"It's the DATA, Stupid!"

How PI Asset Analytics Rescued Our Real-time Multivariate Process Monitoring

Presented by: Matthew Morrow and Bing Zhang

Bristol-Myers Squibb Company

Agenda

- Company Overview
- Business Problem
- Multivariate Modeling Overview
- SIMCA-online/PI System Integration Challenges
- Business Benefits
- Future Capabilities

Our Mission

To discover, develop and deliver innovative medicines that help patients prevail over serious diseases.

WHO ARE YOU WORKING FOR?

Agenda

- Company Overview
- Business Problem
- Multivariate Modeling Overview
- SIMCA-online/PI System Integration Challenges
- Business Benefits
- Future Capabilities

How does real-time multivariate process monitoring benefit the business?

Business Benefits:

- Optimize process performance
- Proactively monitor <u>multivariate</u> process against historical performance
- Empower operators with real-time fault detection
- Reduce risk of batch loss

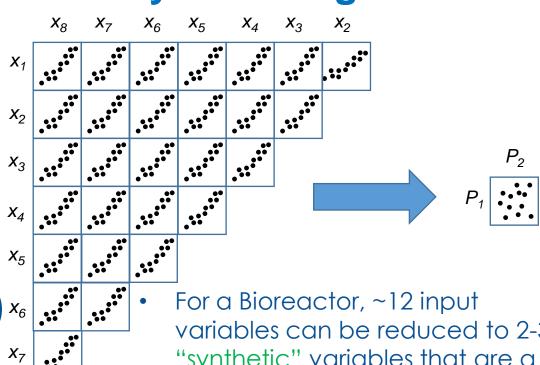
How does real-time multivariate process monitoring benefit the business?

 Opportunity: Leverage data infrastructure and data availability in data sources to enable new capability

Process

Modeling

Process History



Automation

Multivariate Process Analysis Background

What is it?

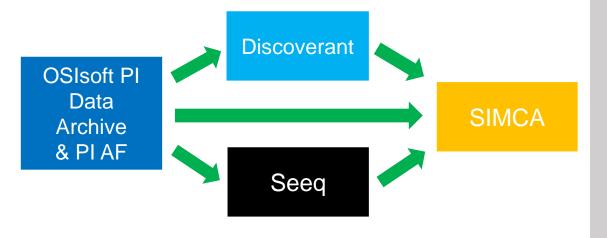
 Transform a large number of highly correlated process variables into a small number of uncorrelated "synthetic" variables (principal components) x_6 that still fully describe the process

variables can be reduced to 2-3 "synthetic" variables that are a linear combination of the 12 process variables

Multivariate Process Analysis Background

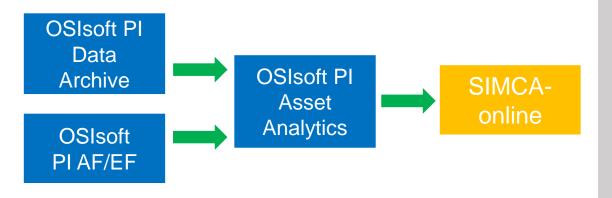
• Why is it useful?

 Can monitor a process using 1 or 2 "synthetic" variables instead of a dozen or more process variables


vs... operator overload with individual trends/alarm banners/graphics

 Past experience can be used to define a multivariate batch tunnel with high and low limits that specify normal process operation

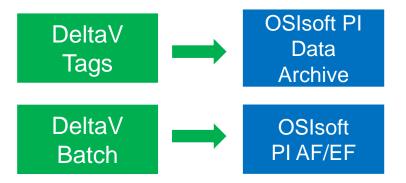
Domain Knowledge

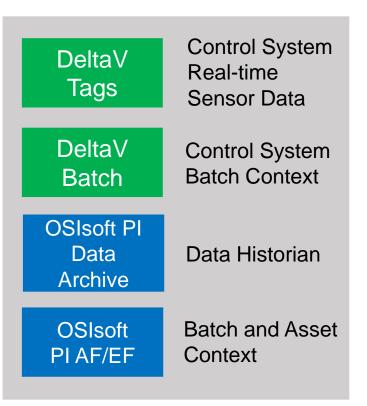

(1) Process Modeling

OSIsoft PI Data Data Historian Archive and Context & PI AF Statistical Data Discoverant Aggregation Real-time Seeq **Event Capsules** SIMCA Modeling

Domain Knowledge

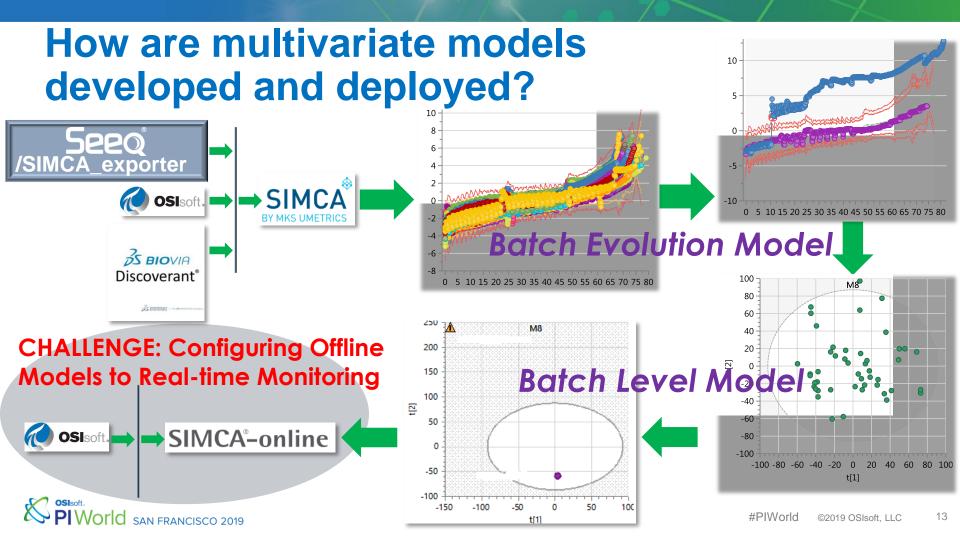
(2) Process History

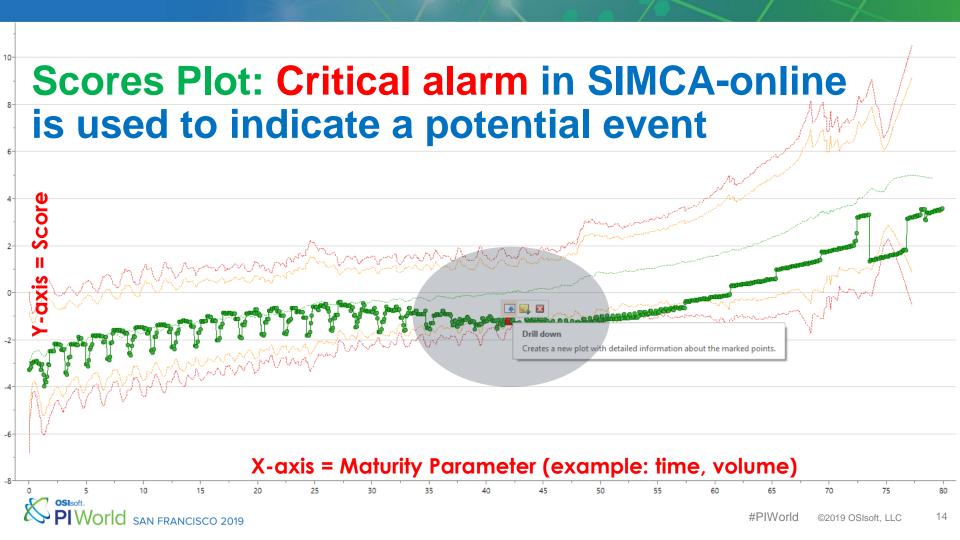



OSIsoft PI Data Historian Data Archive **OSIsoft** Batch and Asset PI AF/EF Context OSIsoft PI Real-time Asset **Derived Data Analytics** SIMCA-Real-time online Monitoring

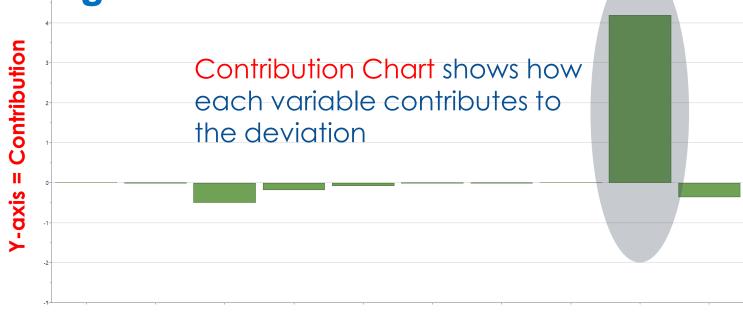
Domain Knowledge

(3) Process Automation

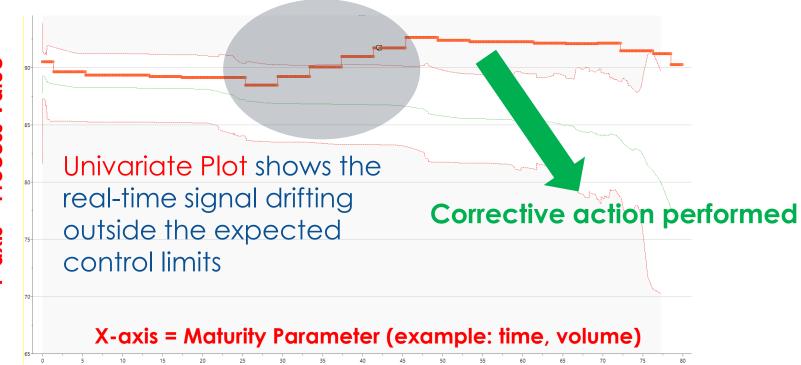




Agenda


- Company Overview
- Business Problem
- Multivariate Modeling Overview
- SIMCA-online/PI System Integration Challenges
- Business Benefits
- Future Capabilities

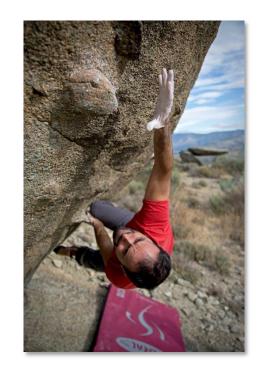
Contribution Chart: Used to determine which parameters may be contributing to an alarm



X-axis = Process Variable

Univariate Plot: Zooming in to look at single parameter performance

-axis = Process Value


Agenda

- Company Overview
- Business Problem
- Multivariate Modeling Overview
- SIMCA-online/PI System Integration Challenges
- Business Benefits
- Future Capabilities

Challenge: Provide Real-time Batch Context to SIMCA-online

- SIMCA-offline models data manually sourced from PI System, Seeq and Discoverant
- IPC and release testing data guide batch selection for process model
- Batch time context is <u>implicitly</u> built into the data sets that feed the models
- Challenge: Transitioning from static model development to real-time data and batch context for process monitoring

Challenge: Provide Real-time Batch Context to SIMCA-online

SIMCA-online shows flat PI AF hierarchy structure with links to PI tags

110660-TI-600/PV.CV 110660-FIC-600/PV.CV

LHS660/CH_ELUTE/BSTATUS.CV LHS660/BATCH_ID.CV

DVN. 110660-TI-225/PV.CV

DVN LSCC.LHS660.OFF Delta Column Pressure

DVN.110660WFI-USM/UNIT_STATUS.CV

DVN.110660WFI-USM/SOL_STATUS.CV DVN.110660WFI-USM/ET EVENT.CV

DVN.110660-WASTE-EM/A_PV.CV DVN.110660-WASTE-EM/A COMMAND.CV

DVN.110660-USM/UNIT STATUS.CV

SIMCA-online provides no visibility into PI Event Frames and PI AF hierarchy structure and attribute names

Data latency

- PI Interface for Emerson DeltaV Batch (PI EMDVB)
- Continuous data if sourced from Enterprise PI System

E W

Specify the conditions for phase execution

The batch identifier tag and the phase execution condition determine when a phase is executed.

■ QFF:QFF

Batch identifier tag

Sleep condition

☐ Phase execution conditions

M3, QFF Elution BEM

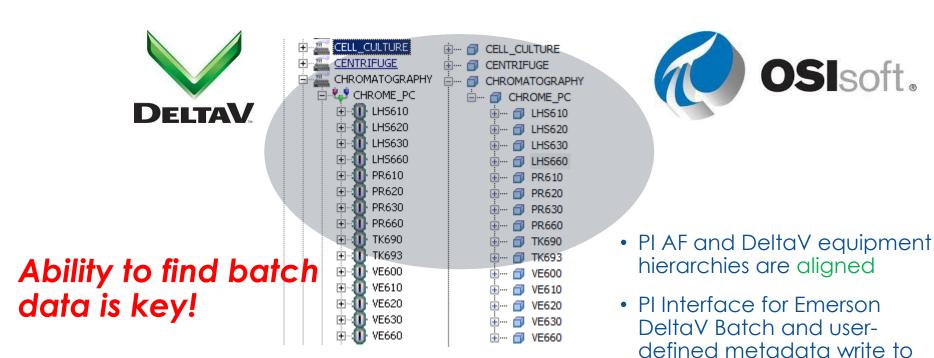
:EnterprisePIAF:LHS660:DVN_LSCC.LHS660.DVN.SIMCA.CH_ELUTE.BatchID

ValueTag(":EnterprisePIAF:LHS660:DVN_LSCC.LHS660.QFF CH_ELUTE Process Phase Active and Running") == 0

ValueTag(":EnterprisePIAF:LHS660:DVN_LSCC.LHS660.QFF CH_ELUTE Phase Active") == 1

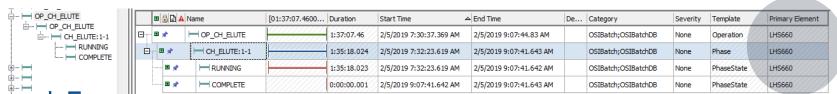
Real-time batch context triggers in SIMCA-online

- Phase execution condition: Phase Active == 1
- Sleep condition: Process Phase Active and Running == 0
- Batch identifier tag: Batch ID


What the \$@#%! Is this a joke?!?

Why are you wasting my time???

This looks so


simple!!!

identical PI AF equipment

hierarchy

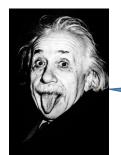
PI Event Frame

Primary Element

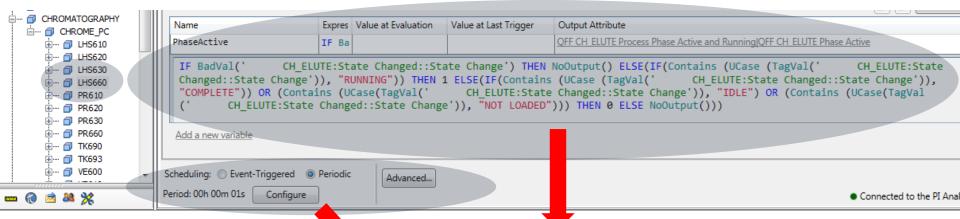
nterprise Pl\pvn_lscc:lhs660:ch_elute:BatchID

PLAF Attribute - BatchID

BatchID PI tag – PI EMDVB interface

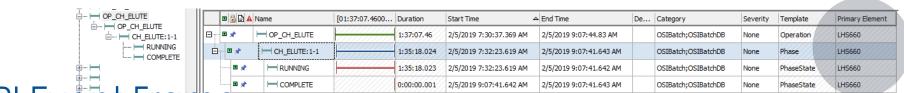

TITE TO TISE PINDVN_LSCC:LHS660:CH_ELUTE:State Changed::State Change

PLAF Attribute - Phase State


Phase State PI tag – PI EMDVB interface

Batch data latency issue identified!

"It's the DATA,
Stupid!"



Example PI Asset Analytics with data latency

OSISOFI.

PIWORIC SAN FRANCISCO 2019

- Equation inputs sourced from PI EMDVB tags
- Periodic scheduling: 1 second period
- Observation: Equation provides desired phase stage change with a undesired delay versus DeltaV
- Can tolerate offset in slower upstream phases but not faster downstream phases

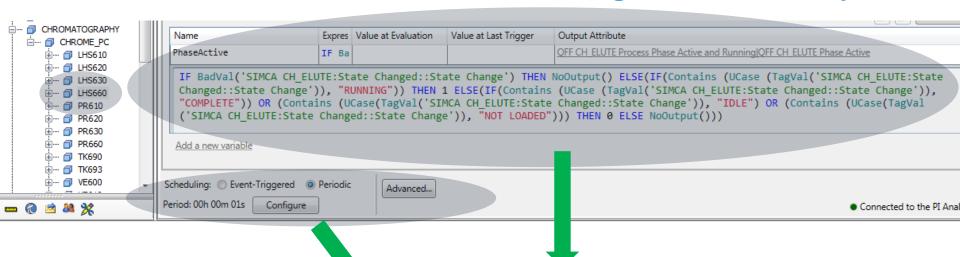
PI Event Frame

Primary Element

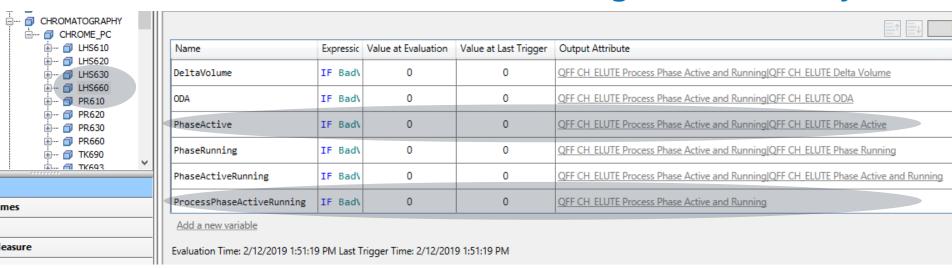
BatchID PI tag – historized DeltaV BatchID tag

▶ \\Site P \LHS660/CH_ELUTE/BSTATUS.CV

▶ \\S``(@ P \LHS660/BATCH_ID.CV

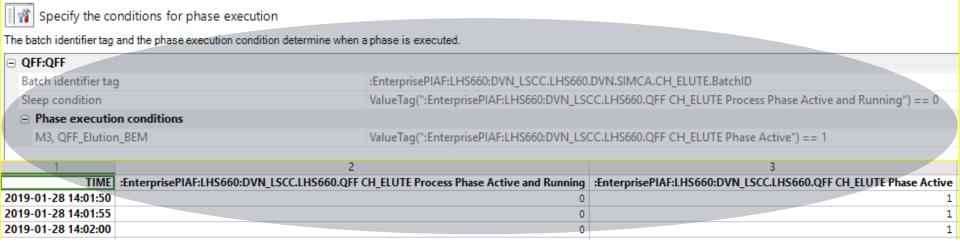

PI AF Attribute - Phase State

Batch data latency issue resolved!



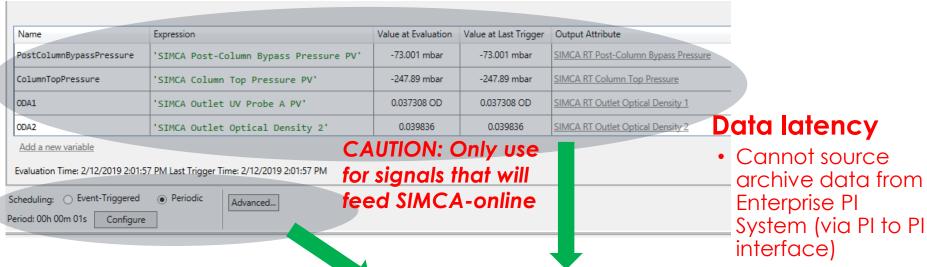
Example PI Asset Analytics without data latency

- Equation inputs sourced from historized DeltaV tags
- Periodic scheduling: 1 second period
- Observation: Equation provides desired phase stage change with near-zero delay versus DeltaV



Example PI Asset Analytics showing Boolean outputs

Phase Active and Process Phase Active Running are triggered in real-time by PI Asset Analytics



Real-time batch context triggers in SIMCA-online

Phase Active and Process Phase Active and Running are read as Booleans from PI Asset Analytics in real-time

SIMCA-online/PI System Integration Workaround: Sourced Real-time Data using PI Asset Analytics

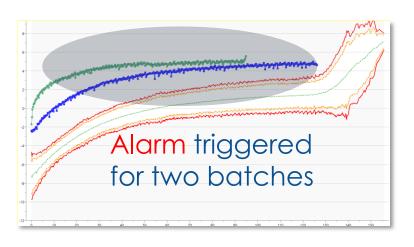
SIMCA-online real-time data needs

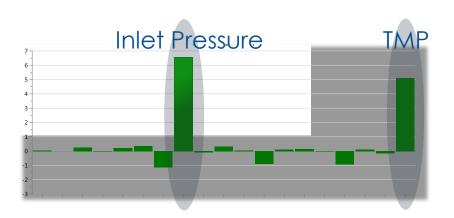
- Need to source highfrequency snapshot data
- PI Asset Analytics provides centralized, flexible solution to replicate snapshot data from Site to Enterprise PI System

SIMCA-online/PI System Integration Workaround: Best Practices

- Use PI Asset
 Analytics
 equations to
 define real-time
 batch context
- Source phase state/batch ID from historized DeltaV tags

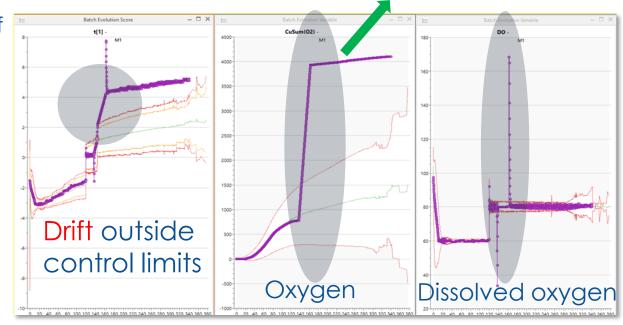
- Use DeltaV equipment modules to simplify equations
- Build solution at Site PI System and not Enterprise PI System
- Source real-time continuous data from snapshot data




Agenda

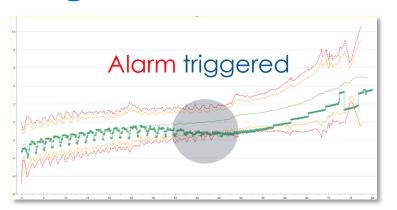
- Company Overview
- Business Problem
- Multivariate Modeling Overview
- SIMCA-online/PI System Integration Challenges
- Business Benefits
- Future Capabilities

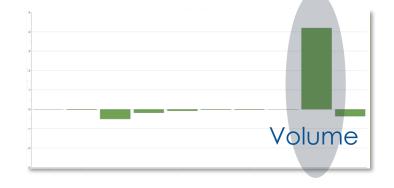
Business Benefit Example #1: UF Diafiltration – Adjusted Transmembrane Pressure to Comply with Allowable IPC Limit


- High TMP was detected during a UFDF step
- New protocol was implemented to reduce TMP within IPC limits
- Prevented potential deviations

Business Benefit Example #2: Bioreactor – Fixed Open Oxygen Valve

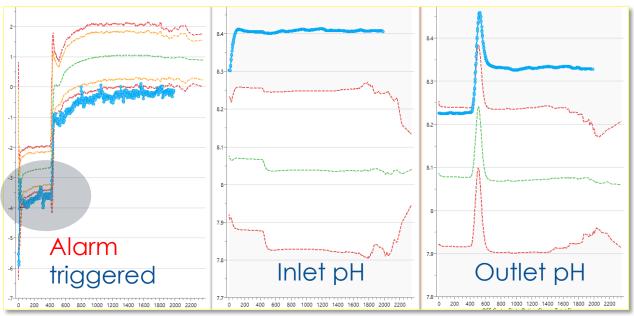
Corrective action performed


- Abnormally high usage of O2 in a bioreactor was identified
- Cause was O2 escaping through an room
- Valve was closed which prevented waste of O2 (an expensive utility)
- Early fault detection averted maintenance issue by enabling the leak to get fixed promptly



Business Benefit Example #3: Bioreactor –

Leaking Steam Valve


- Increasing volume trend detected in a bioreactor
- Investigation identified the cause as a leaking valve
- Proactive identification and correction of this leak prevented potential impact to the process

Business Benefit Example #4: Chromatography – Drifting pH

- High Inlet pH and Outlet pH on the skid were detected
- Recipe for transition to next process phases did not proceed due to "high" pH
- Root cause was drifting pH probes

 More frequent replacement of pH probes was implemented to ensure accurate pH reading and streamline recipe execution

Agenda

- Company Overview
- Business Problem
- Multivariate Modeling Overview
- SIMCA-online/PI System Integration Challenges
- Business Benefits
- Future Capabilities

Future Capabilities

- Upgrade to SimAPI 3.0.0.7271 (released Feb 2019)
- Expand multivariate modeling:
 - Additional biologics process stages
 - Equipment Monitoring
 - Pharmaceutical products
 - Other biologics sites

Acknowledgements: A Great Collaborative Effort

Data Systems, Monitoring and Analytics

GPS IT Process Robustness

GPS IT PI Build/Run

Manufacturing Technology Process Engineering – Upstream

Manufacturing Technology Process Engineering – Downstream

Manufacturing Operations

Manufacturing Science & Technology

IT/Automation

Quality Assurance

Deadline Solutions

OSIsoft Tech Support

Sartorius Stedim

Seeq

Bristol-Myers Squibb

"It's the DATA, Stupid!" How PI Asset Analytics Rescued Our Real-time Multivariate Process Monitoring

CHALLENGE

Transitioning from offline model building to real-time multivariate monitoring requires batch time triggers to frame the dataset of interest

 Our real-time Multivariate Process Monitoring tool is not PI Event Frame aware – no direct way to mark batch time triggers to instruct multivariate monitoring when to start/stop

SOLUTION

Identified substitutes for PI Event Frames within the raw batch data brought into PI via PI Interface for Emerson DeltaV Batch (PI EMDVB)

 Created PI Asset Analytics to transform raw batch data into Boolean batch time markers that SIMCA-online could easily parse

RESULTS

Real-time Multivariate Monitoring enabled across the company provided Operations a tool to monitor the process against historical performance and enable real-time fault detection

- Prevented potential batch impact
- Averted maintenance issue
- Prevented potential deviations
- Streamlined recipe execution

"It's the DATA, Stupid!" How PI Asset Analytics Rescued Our Real-time Multivariate Process Monitoring

- Matthew Morrow
- IT Business Partner
- Bristol-Myers Squibb
- matthew.morrow@bms.com
- Bing Zhang, Ph.D.
- Process Analytics Engineer
- Bristol-Myers Squibb
- bing.zhang@bms.com

Questions?

Please wait for the microphone

State your name & company

Please remember

DZIĘKUJĘ CI S NGIYABONGA D TEŞEKKÜR EDERIM YAY (IE TERIMA KASIH

EIBH 고맙습니다 MISAOTRA ANAO DANKON

KEA LEBOHA

KÖSZÖNÖM PAKMET CI3FE

БЛАГОДАРЯ

ТИ БЛАГОДАРАМ

TAK DANKE \$\frac{1}{2}\$

MERCI

HATUR NUHUN

OSIsoft.

MULŢUMESC

ESKERRIK ASKO

ХВАЛА ВАМ

TEŞEKKÜR EDERIM

ДЗЯКУЙ ΕΥΧΑΡΙΣΤΩ GRATIAS TIBI **DANK JE**

AČIŪ SALAMAT MAHALO IĀ 'OE TAKK SKAL DU HA

GRAZZI PAKKA PÉR

PAXMAT CAFA

CẨM ƠN BẠN

ありがとうございました ĎAKUJEM
SIPAS JI WERE TERIMA KASIH MATUR NUWUN
UA TSAUG RAU KOJ
ТИ БЛАГОДАРАМ
СИПОС

SAN FRANCISCO 2019