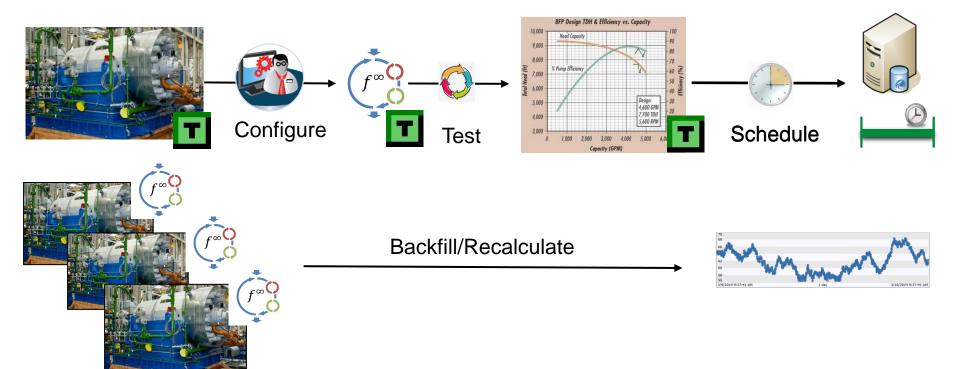
Getting more out of Asset Analytics

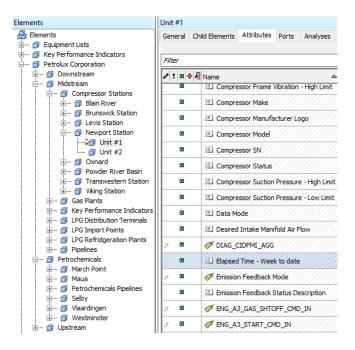
Nitin Agarwal and Petrit Duraku

Agenda

- Asset Analytics overview
- Best practices
 - Building expressions
 - Using Event Frames to capture critical events
 - Backfilling and recalculations
 - Management
- Summary


Asset Analytics

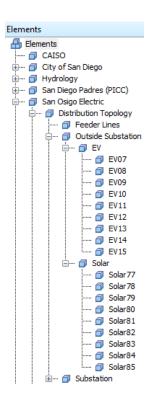
- 150+ built in functions
- Streaming calculations triggered by events or clock
- Output to PI Points for reporting and trending
- Create event frames and rollups
- Trigger notifications
- Supports templates, fully integrated into PI AF
- Backfill and Manual recalculation
- Auto-recalculation for late or out-of-order data



Workflow

PIWOrld SAN FRANCISCO 2019

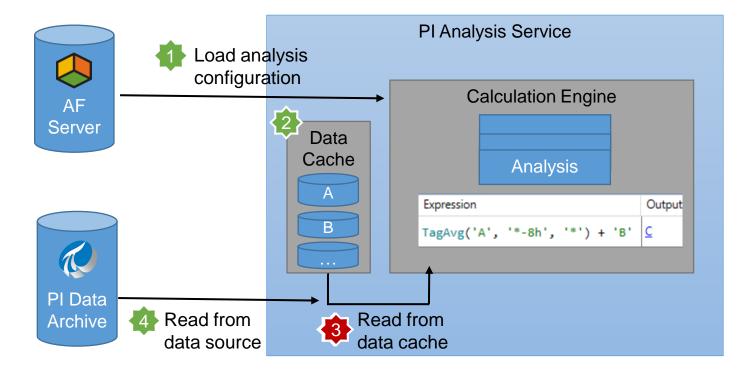
A bit about Context...


Typical use case:

I want to monitor and detect problems with my compressor, before they become catastrophic.

- AF models assets and processes
- Inputs (typically) come from the asset
- Analysis outputs are mapped on the asset

A bit about Context...



Typical use case:

I want to aggregate EV and Solar production for my substations.

- Inputs come from asset hierarchy
- Analysis outputs used in dashboards, CBM, KPIs & reports

PI Analysis Service - Overview

Design Tradeoffs

- Optimized for
 - Streaming analytics use case
 - Real-time calculations take priority over recalculations
 - Easy configuration no programming experience required
- Not suitable for
 - Executing queries across really large number of attributes
 - Extracting large amounts of time series data
 - Ad-hoc calculations

Building Expressions Use of variables

Add a new variable		Evaluat Evaluat	te
Name	Expression	Output Attribute	
RatedFlowRate	// Typical Flow Rate of the Pump 450	Мар	8
RatedPressure	// Typical Pressure of the Pump 150	Мар	⊗
RatedTemperature	// Typical Temperature of the Pump 170	Мар	8
FlowRate	IF 'Pump Status' = "ON" THEN Rand(RatedFlowRate,35) ELSE 0	<u>Discharge Flow Rate</u>	8
Pressure	IF 'Pump Status' = "ON" THEN Rand(RatedPressure,10) ELSE Rand(.1,.2)	Suction Pressure	8
PumpStatusSeconds	SecSinceChange('Pump Status')	Мар	8
Temperature	<pre>IF 'Pump Status' = "ON" and 'Bearing Temperature' < RatedTemperature THEN 'Bearing Temperature'+Rand(5,2) ELSE IF 'Pump Status' = "ON" and 'Bearing Temperature' > RatedTemperature THEN Rand(RatedTemperature,6) ELSE If 'Pump Status' = "OFF" THEN ((Rand(1,.1)*RatedTemperature - 90) * Exp(001*PumpStatusSeconds)) + 90 ELSE NoOutput()</pre>	Bearing Temperature	8

Building Expressions

Use of variables

Easily assign variables to expressions, by highlighting and right-clicking on the highlighted text:

```
PumpStatusSeconds SecSinceChange('Pump Status')

SecSinceChange('Pump Status')

Copy Ctrl+C

Cut Ctrl+X

Paste Ctrl+V

Assign to variable Ctrl+Alt+A us' = "ON" and 'Bearing Temperature' < RatedTemperature

Assign the selected expression to a variable and replace all occurrences with the variable.

ELSE IF 'Pump Status' = "ON" and 'Bearing Temperature' > RatedTemperature

Temperature THEN Rand(RatedTemperature,6)

ELSE IF 'Pump Status' = "OF"

THEN ( (Rand(1,.1)*RatedTemperature - 90) * Exp(-.001*PumpStatusSeconds)) + 90

ELSE NOOUtput()
```


Building Expressions

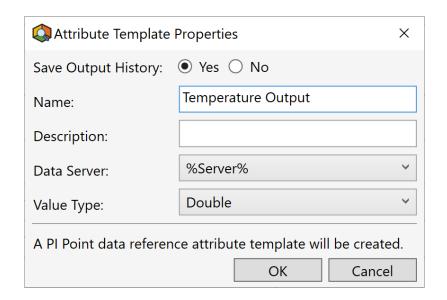
Comments

Use of comments in expressions helps with readability:

Add a new variable		 <u></u>	≣↓ Evaluate
Name	Expression	Output Attribute	
RatedFlowRate	// Typical Flow Rate of the Pump 450	Мар	(S
RatedPressure	// Typical Pressure of the Pump 150	Мар	(S
RatedTemperature	// Typical Temperature of the Pump 170	Мар	(S
FlowRate	IF 'Pump Status' = "ON" THEN Rand(RatedFlowRate,35) ELSE 0	Discharge Flow Rate	(2
Pressure	IF 'Pump Status' = "ON" THEN Rand(RatedPressure,10) ELSE Rand(.1,.2)	Suction Pressure	Q
PumpStatusSeconds	SecSinceChange('Pump Status') /*Pump status in seconds*/	Map	(2
Temperature	IF 'Pump Status' = "ON" and 'Bearing Temperature' < RatedTemperature THEN 'Bearing Temperature'+Rand(5,2) ELSE IF 'Pump Status' = "ON" and 'Bearing Temparature' > RatedTemperature THEN Rand(RatedTemperature,6) ELSE If 'Pump Status' = "OFF" THEN ((Rand(1,.1)*RatedTemperature - 90) * Exp(001*PumpStatusSeconds)) + 90 ELSE NoOutput()	Bearing Temperature	8

Building Expressions

Exit early


If some expressions are not needed to be evaluated based on same conditions, the Exit() function can be used:

Add a new variable	ariable		
Name	Expression	Output Attribute	
RatedFlowRate	// Typical Flow Rate of the Pump 450	Мар	8
RatedPressure	// Typical Pressure of the Pump 150	Мар	8
RatedTemperature	// Typical Temperature of the Pump	Мар	8
Validation	if (BadVal('Pump Status')) then Exit() else NoOutput()	Мар	8
FlowRate	IF 'Pump Status' = "ON" THEN Rand(RatedFlowRate,35) ELSE 0	Discharge Flow Rate	8
Pressure	IF 'Pump Status' = "ON" THEN Rand(RatedPressure,10) ELSE Rand(.1,.2)	Suction Pressure	8
PumpStatusSeconds	SecSinceChange('Pump Status')	<u>Map</u>	8
Temperature	IF 'Pump Status' = "ON" and 'Bearing Temperature' < RatedTemperature THEN 'Bearing Temperature'+Rand(5,2) ELSE IF 'Pump Status' = "ON" and 'Bearing Temperature' > RatedTemperature THEN Rand(RatedTemperature,6) ELSE If 'Pump Status' = "OFF" THEN ((Rand(1,.1)*RatedTemperature - 90) * Exp(001*PumpStatusSeconds)) + 90 ELSE NoOutput()	Bearing Temperature	8

Historizing Data

Store data history into PI Points:

Working with Multiple Values

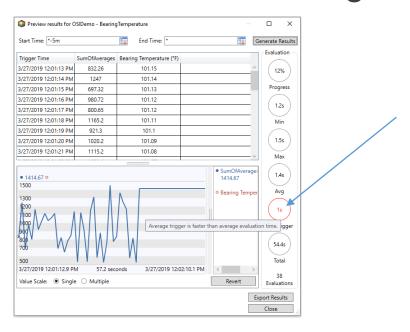
Retrieve and filter data in your calculations:

Add a new variable	<u></u>	Evaluate			
Name	Expression	Value at Evaluatio	Value at Last Trigg	Output A1	
BearingTemperature20	RecordedValuesByCount('Bearing Temperature', '*', 20)	1 [93.889 °F,, 1	1 [93.889 °F,, 1	Мар	(X)
BearingTemperatureDay	RecordedValues('Bearing Temperature', 't', '*')	109.93 °F,, 9	109.93 °F,, 9	Мар	(X)
BearingTemperatureFiltered	FilterData(BearingTemperature_20, \$val > 110)	1 [114.48 °F,, 1	1 [114.48 °F,, 1	Мар	(X)
BearingTemperatureDayNew	MapData(BearingTemperatureDay, if \$val < 100 then 100 else \$val)	109.93 °F,, 1	109.93 °F,, 1	Мар	(X)
BearingTemperatureDayNewMin	Min(BearingTemperatureDayNew)	100 °F	100 °F	Мар	(X)
BearingTemperatureDayNewMax	Max(BearingTemperatureDayNew)	175.52 °F	175.52 °F	Мар	(X)

Templates

- Provide manageability, consistency and governance
- Use templates for any repetitive work or for future extensions.
- A modification to the template is applied to all analyses from that template.
- Searching and filtering in UI is also easier with templates.
- More performant.

Evaluate


Perform an Evaluate to identify possible issues during configuration:

Name	Expression	Value at Evaluatio	Value at Last Trigg	Output Attribute	
RatedFlowRate	// Typical Flow Rate of the Pump 450	450	450	Мар	(
RatedPressure	// Typical Pressure of the Pump 150	150	150	Мар	Q
RatedTemperature	// Typical Temperature of the Pump 170	170	170	Мар	(2
Validation	if (BadVal('Pump Status')) then Exit() else NoOutput()	-	-	Мар	(
FlowRate	IF 'Pump Status' = "ON" THEN Rand(RatedFlowRate,35) ELSE 0	464.22	455.14	Discharge Flow Rate	(8
Pressure	IF 'Pump Status' = "ON" THEN Rand(RatedPressure,10) ELSE Rand(.1,.2)	152.84	150.91	Suction Pressure	(
PumpStatusSeconds	SecSinceChange('Pump Status')	14542 s	14400 s	Мар	(8
Temperature	IF 'Pump Status' = "ON" and 'Bearing Temperature' < RatedTemperature THEN 'Bearing Temperature'+Rand(5,2) ELSE IF 'Pump Status' = "ON" and 'Bearing Temperature' > RatedTemperature THEN Rand(RatedTemperature,6) ELSE If 'Pump Status' = "OFF" THEN ((Rand(1,.1)*RatedTemperature - 90) * Exp(001*PumpStatusSeconds)) ELSE NoOutput()	170.03	170.03	Bearing Temperature	6

Preview

Preview calculation before checking in:

Expensive Functions

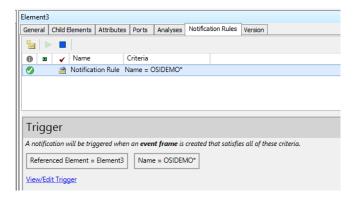
- Some functions such as summary functions (TagAvg etc.) might require a lot of data in the past to perform a calculation.
- Optimizations can be made by using a smaller range or evaluating less often if the range is larger.
- Compression on PI points can also help with density of data.

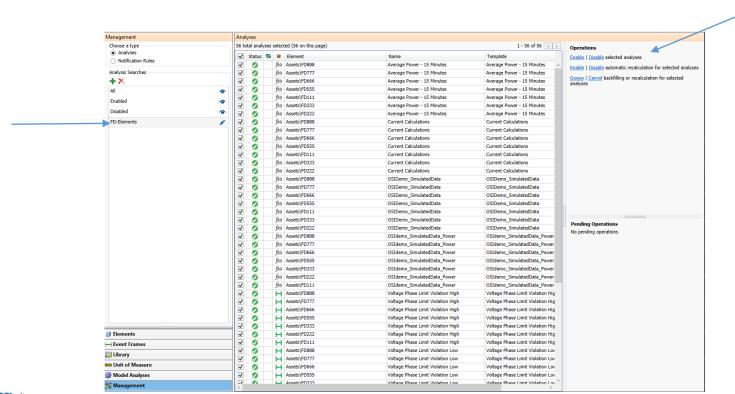


Event Frames and Notifications

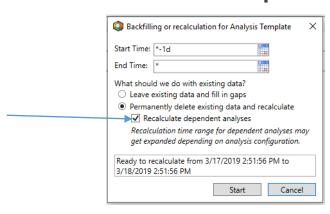
- Utilize Event Frames to capture events.
- Good for reports, comparisons and tracking.

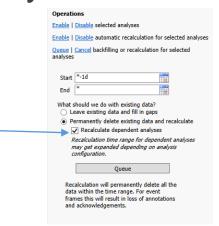
	Name	2/4/2019 11:00:33 AM	[43.04:34:05.2807465]	3/19/2019 4:34:38 PM	Duration	Start Time	End Time	De
□ 🖈	─ OSIDEMO_Rig18 Rotary Drilling 2019-02-04 11:00:33.000	7//////////////////////////////////////			19:8:00:24	2/4/2019 11:00:33 AM	2/23/2019 7:00:57 PM	
T 🖈	─ OSIDEMO_Rig2 Rotary Drilling 2019-02-10 03:00:09.000	<u> </u>			10:10:00:30	2/10/2019 3:00:09 AM	2/20/2019 1:00:39 PM	
1 🖈	─ OSIDEMO_Rig1 Rotary Drilling 2019-02-13 14:00:42.000				11:3:00:09	2/13/2019 2:00:42 PM	2/24/2019 5:00:51 PM	
⊞ 🖈	─ OSIDEMO_Rig3 Rotary Drilling 2019-02-13 23:01:09.000	1			18:19:59:48	2/13/2019 11:01:09 PM	3/4/2019 7:00:57 PM	
₹ 🖈	─ OSIDEMO_Rig7 Rotary Drilling 2019-02-17 00:00:00.000	\(\lambda\)			4: 19:00:57	2/17/2019 12:00:00 AM	2/21/2019 7:00:57 PM	


Capture data points at the close of event frame.


Event Frames and Notifications

Get notified when an event starts and/or ends.


Bulk Operations



Recalculation/Backfilling

- Real-time vs Recalculation: Independent workers.
- Recalculate dependent analyses:

Auto-Recalculation

- Enable auto-recalculation when:
 - Out of order data is expected and
 - It is required to recalculate past data.
- Don't enable auto-recalculation when:
 - Past data shouldn't be modified
 - Past data from dependent calculations shouldn't be modified.

Auto-backfilling

- Enable Auto-backfilling to fill gaps automatically between service restarts.
- Analyses are queued for backfilling at start of service.

Change Management

- Consider setting up Dev or Test environment
 - Allows for experimentation while developing calculations
 - Many engineers could be writing calculations
 - Frequent changes can cause some churn for the production system
 - Easier to isolate issues

High Availability

- PI Analysis Service supports failover using Windows Server Failover Clustering (WSFC)
- Use buffering for writing PI Point outputs (PI Buffer Subsystem)

More Resources

- Contextualize: Rolling out Asset Framework (PI World 2019, Day 3 Best Practices)
- PI Square

Nitin Agarwal
Team Leader, Software Development
OSIsoft
nagarwal@osisoft.com

Petrit Duraku
Sr Software Developer
OSIsoft
pduraku@osisoft.com

Questions?

Please wait for the **microphone**

State your name & company

Please remember

DZIĘKUJĘ CI S NGIYABONGA D TEŞEKKÜR EDERIM YAY (IE TERIMA KASIH

KEA LEBOHA EIBH 고맙습니다 4 MISAOTRA ANAO DANKON

KÖSZÖNÖM PAKMET CI3FE

ТИ БЛАГОДАРАМ БЛАГОДАРЯ

TAK DANKE \$\frac{1}{2}\$

MERCI

HATUR NUHUN

OSIsoft.

ESKERRIK ASKO ХВАЛА ВАМ

MULŢUMESC

TEŞEKKÜR EDERIM

ДЗЯКУЙ ΕΥΧΑΡΙΣΤΩ GRATIAS TIBI **DANK JE**

AČIŪ SALAMAT MAHALO IĀ 'OE TAKK SKAL DU HA

GRAZZI PAKKA PÉR PAXMAT CAFA

CẨM ƠN BẠN

ありがとうございました ĎAKUJEM
SIPAS JI WERE TERIMA KASIH MATUR NUWUN
UA TSAUG RAU KOJ
ТИ БЛАГОДАРАМ
СИПОС