Practical view on the role of the PI System in industry 4.0+ and AI for manufacturing By Remi Duquette & Martin Davis

Maya HTT

Your copresenter...

Martin Davis

Managing Partner DUNELM Associates Ltd Martin.Davis@DUNELMAssociates.com

C-level Executive
 Drives business value
 Multi-sector experience

Defining your Industry 4.0
 Strategy

- Helping you define your Industry 4.0 Strategy
- Practical experience driving Industry 4.0 and Operational Intelligence in multinational companies

Mava H

 Focus on quality business outcomes resulting in customer satisfaction

SAN FRANCISCO 2020

Our Process

Your copresenter...

Remi Duquette

Vice-President

Emerging Solutions Industrial AI | IIoT | Datacenter Clarity LC[©] remi.duquette@mayahtt.com

\$\$ spacecraft in orbit
\$100+ Datacenter Clarity LC© sites
\$5,000+ hours on AI-ML-DL
\$10,000+ hours on skates
\$1 short-track speed skating champion

→ Your industrial AI partner

https://www.mayatt.com/expertise/artificial-intelligence/

Better thinking Better future₀

Mava H1

Industry 4.0 - The 4th Industrial Revolution

Maya HTT Better thinking Better future.

Associates

GDP Value of Industry 4.0 by 2030

Industry 4.0 Adoption

Industry 4.0 Adoption

57% in the early stages of adoption

Industry 4.0 Adoption

57% in the early stages of adoption

30% ONLY, report extensive adoption

Real Benefits from Industry 4.0

Improve OEE	Reduce Costs	Quality	Innovate
60%	50%	42%	13%
Achieved	Reduced	Improved	Increased
Productivity	Operating	Product	Ability to
Increases	Costs	Quality	Innovate

Maya HTT Better thinking Better future。

Bottom Line Impact

Industry 4.0 provides opportunities to:

- Reduce unit costs
- · Increase capacity with minimal investment
- Increase revenue & profitability
- Improve transparency of business performance
- Grow through increased capacity

Ma

Industry 4.0 has been proven to deliver results

What is Industry 4.0?

Put simply:

SAN FRANCISCO 2020

Turning real-time data from your equipment into real-time information to make decisions and improve your processes (manual or automated).

Mava H

What is Industry 4.0?

- Everything connected
- Data becomes actionable information
- Real-time information to the right people
- Automated analytics
- Autonomous actions

Orld SAN FRANCISCO 2020

Mava

Practical Examples of Industry 4.0?

Robotics and Autonomous Vehicle

Predictive Maintenance using Artificial Intelligence

Digital work instructions / Augmented Reality

Predictive Maintenance

Autonomous Factories

Personnel Safety / Collision Avoidance

Remote Monitoring and Mobile Tools

Asset Tracking & Management

 \bigotimes

OEE (Overall Equipment Efficiency) by machine center Real-time Quality Detection Condition-Based Maintenance (Automated)

Practical Examples of Industry 4.0?

Sensors & Dashboards on all key machine centers

Predictive Maintenance

Robotics and Autonomous Vehicle

Autonomous Factories

Digital work instructions / Augmented Reality

Personnel Safety / Collision

Avoidance

Remote Monitoring

and Mobile Tools

Asset Tracking & Management

 \bigotimes

OEE (Overall Equipment Efficiency) by machine center Real-time Quality Detection Condition-Based Maintenance (Automated)

Are you Al-ready? AI Project Exploration Road-mapping

-

Engineering	Manufacturing	Operations	Marketing	Sales	Customer Experience
 Quality Change management Systems level model Root cause analysis Surrogate models Optimization 	 Product Quality is sues Rejections rates First time yield Total yield OEE Product performance specification issues Env. Factors and regulations Supplier issues Downtime Root cause of failures Energy efficiency 	 Downtime Incidents Logistics and scheduling Assethealth Telemetry data quality Fleet optimization Performance analysis Root cause of failures Energy efficiency 	 Sales data Product features analysis Customer sentiment analysis Chat-bot directed campaigns 	 Performance correlations Price history NLP on standard PO forms Raw material cost forecasting Dem and forecasting Recommendation tools 	 Warranty issues Returns Performance issues Operational feedback Product support After sales services support

Getting started A typical AI adoption roadmap

Al maturity

<u>چ</u>

Readiness Assessment

- Business use cases
- Data availability
- 2~4 weeks

Orld SAN FRANCISCO 2020

Is there business value for using AI?

Discovery Project

- Target use case
- Data ecosystem audit
- Techniques
- Correlations
- Cause & effect
- 3~6 months What can we learn from the data?

Enablement Project

- Validation
- Operational deployment
- Data strategies •
- Extended scope ٠
- Industry 4.0 roadmap update

Systematically

capturing savings

Cross BU

- strategies
- Inter department

Corporate Strategy

- Enable workflows
- Use case roadmap
- Data roadmap ٠
 - Industry 4.0 updated implementation

Al as a culture

Adoption Stages & Timeline

Better thinking

Getting started – Establish YOUR Al Roadmap A typical Al adoption roadmap

Use Cases

- 1 Reduce product quality issues
- 2 Increase first time yield success rate
- 3 Reduce end product performance variability
- 4 Increase energy efficiency

SAN FRANCISCO 2020

- 5 Optimize machine & people capacity
- 6 Find machine downtime root causes and run preventative maintenance

Use Case Value

Al-based Metal Parts Machining Cost Prediction

Metal parts	manufacturer Build	an AI model to predict me	tallic parts manufacturing cost
Challenge	 Custom parts manuface Current quoting proce Time consuming, erro 	cturer ess : MS Excel sheet with 100's rules or prone	
Solution	 Large library of historical parts, multiple features & costs Extract CAD features to classify parts Build a neural network to predict cost 		
Benefits	 Accelerate quoting pro Improve reliability of q 	ocess quotes	

Maya HTT Better thinking Better future.

20

-

Associates #

Al-based Metal Parts Machining Underlying structure of Al automation

Manufacturing Quality – AI Use Case Example . ا∰ Reduce product QA rejection & variability

STE 1 **BUSINESS NEEDS & USE CASES STEP 3 STEP 4 STEP 5 AI CREATION AI PROBATION AI BUSINESS** & OPTIMIZATION & SME RESULTS STEP 2 VALIDATION **DATA PRE-**PROCESSING Maya HTT Better thinking Better future.

PIWORID SAN FRANCISCO 2020

22 #PIWorld ©2020 OSIsoft, LLC

Manufacturing Quality – AI Use Case Example Reduce product QA rejection & variability

<u>چ</u>

Manufacturing Quality – Al Use Case Example Reduce product QA rejection & variability

STE 1 BUSINESS NEEDS & USE CASES

Data Sources Access

- 1) PI System (4+ years)
- 2) SQL (4+years)
- 3) Proprietary ERP DB (4+ years)

Data Manipulations

- 1) PI Asset Framework structure validation and data augmentation with SQL flags
- 2) PI Event Frame creation by combining SQL-based manufacturing start/end flags and PI System tags
- 3) Data mapping, SQL queries, cleanup, normalization, stats...

STEP 3 AI CREATION & OPTIMIZATION

Mava H

STEP 4 AI PROBATION & SME VALIDATION STEP 5 AI BUSINESS RESULTS

Better thinking Better future.

Manufacturing Quality – AI Use Case Example Reduce product QA rejection & variability

-

Manufacturing Quality – AI Use Case Example <u>ال</u> Reduce product QA rejection & variability

Manufacturing Quality – Al Use Case Example Reduce product QA rejection & variability

Conclusions Early manufacturing stage failure prediction possible with applied AI Removal of bad STE 1 materials and unnecessary production time and re-work time = **BUSINESS NEEDS & USE CASES** ~\$400k / year in savings **STEP 4** STEP 3 Gained insight to guide production regarding sensitive settings and **AI CREATION AI PROBATION** operations & OPTIMIZATION & SME **Established tighter** STEP 2 production thresholds VALIDATION at key manufacturing **DATA PRE**stages and machine parameters to reduce PROCESSING rejections rates • Cleaned up systematic erroneous data entry

> Better thinking Better future

Mava H¹

WORLD SAN FRANCISCO 2020

Manufacturing Quality – AI Use Case Example . ا∰ Reduce product QA rejection & variability

STE 1 **BUSINESS NEEDS & USE CASES STEP 3 STEP 4 STEP 5 AI CREATION AI PROBATION AI BUSINESS** & OPTIMIZATION & SME RESULTS STEP 2 VALIDATION **DATA PRE-**PROCESSING Maya HTT Better thinking Better future.

PIWORID SAN FRANCISCO 2020

Manufacturing Quality – AI Use Case Example Reduce product QA rejection & variability

7 Elements leading to success in AI for manufacturing

- ✓ Business use cases identified source of value
- ✓ Data infrastructure in place
- \checkmark Data quantity in support of business case
- \checkmark Data quality and operational bias
- ✓ AI model and data pipeline to operational AI model
- ✓ AI integration and process
- ✓ Open culture and change management

Data cleaning is

of AI project costs

Maya HTT Better thinking Better future.

Raw Data with Unlabeled Events

What does an anomaly look like?

Raw Data with Unlabeled Events

What does an anomaly look like?

Maya HTT Better thinking Better future.

Raw Data with Unlabeled Events

What does an anomaly look like?

)

Maya HTT Better thinking Better future. Raw Data with Unlabeled Events

What does an anomaly look like?

Al Solution: Outlier Detection App

Maya HTT Better thinking Better future.

Better information

Better dashboards

Better decisions

Better service

Associates

ssociates

What's Next?

Bring AI models to the edge with OSIsoft Edge Data Store (EDS)

ssociates

What's Next? No-Code | Low-code Apps powered by OCS

"We need it now!"

We need to take new ideas and products to market quickly

We need to streamline and automate our operations

We need to digitalize our customer experience

		"We have an 18-month
Business demand		backlog!"
		I'm not able to respond fast enough to new business requirements
		My existing systems are not flexible enough
	IT supply	I need to stay in control

What's Next? No-Code | Low-code Apps powered by OCS

What's Next? No-Code | Low-code Apps powered by OCS

Low-code development

Build cloud-native applications 10x faster with 70% less resources

Multi-experience

Applications for any channel, any device, online and offline, smart and connected

Unlock and extend your data and systems

Integrate data and logic from Teamcenter, MindSphere, ERP, CRM and more

\mathcal{O}

Enable the Digital Twin

Deep integration with Siemens portfolio to build applications that enable the most robust Digital Twin

Multi-cloud

1-Click deploy to any public or private cloud, as well as on-premises and edge

PIWorld SAN FRANCISCO 2020 Maya HTT Better thinking Better future.

OSIsoft

What's Next

Digital twin across a product's lifecycle

What's Next: Digital Twin

https://www.mayahtt.com/expertise/artificial-intelligence

PIWORIC SAN FRANCISCO 2020

Maya HTT Better thinking Better future.

Maya HTT Better thinking Better future®

Industry 4.0

© DUNELM Associates

ciates

DUNE

Corporate Strategy

- Smart / Digital Factory
- Operational Intelligence
- Lean/6-Sigma approaches 3
- Automation
- Trained and empowered digital workers

Industrial Internet

Enabling Technologies

- Everything connected (devices/machines/people)
- IIoT devices
- Existing operational data
- Analytics (incl. Big Data)
- Cloud computing
- AI/ML

Competitive Advantage

Improved Performance

- Increased revenue & profitability
- Increased visibility
- Improved OEE
- Reduced downtime

DUNELM Associates

45

DUNELM

SAN FRANCISCO 2020

tes

ociat

DUNELM A

Operational Excellence, built on Operational Intelligence, powered by **intelligence**

> Better thinking Better future.

Mava

Contact us for an Industry 4.0 or Are you Al-Ready Audit and Workshop...

- Remi Duquette
- Vice-president
- Maya HTT Ltd
- remi.duquette@mayahtt.com
- Are you AI ready?
- Martin Davis
- Managing Partner
- DUNELM Associates Limited
- <u>Martin.Davis@DunelmAssociates.com</u>

Questions?

Please wait for the **microphone**

State your name & company

Save the Date...

AMSTERDAM October 26-29, 2020

San Francisco 2020

Better thinking Better future

Maya

