

Ginna PI Vision - π story

Miroslav Kopál

Introduction

Craig Crandall @ Ginna NY
IT Nuclear Real Time West/NY Group

Miroslav Kopál @ Cantera IL IT Operations Group

Vision of the PI System at R.E. Ginna

• Robert Emmett Ginna Nuclear Power Plant (R.E. Ginna NPP), named after former Chief Executive of Rochester Gas & Electric, one of the nation's earliest advocates of using nuclear energy to generate

electricity

- One of the 11 operating Exelon Nuclear power plants (~22.5 TW)
- The R.E. Ginna NPP is located along the south shores of Lake Ontario, 20 miles NE of Rochester NY
- Ginna is one of the oldest nuclear power reactors still in operation in US, having gone into commercial operation in 1970, producing 610 MW of electricity

Vision of the PI System – Beginning

- Started in 2016 with Plant Process Computer (PPC) Update but new PPC software version was not compatible with existing PPC archive files structure
 - a) Convert archives to new version → required to write custom adaptation code
 - **b) Keep legacy software** version around to view old archives → on isolated computer
 - c) Export archives to different data historian \rightarrow e.g. PI System
- Ginna has had only PPC data historian (R*Time) holding older files on tapes to utilize available disk space on aging PPC HW
- Chose option "c" utilize PI System license & HW from retired Zion Nuclear Plant, opportunity for new data visualization

Vision of the PI System-Implementation

- The plan:
 - Use existing Exelon software to transfer data from PPC into the PI System
 - Utilize and take advantage of newer OSIsoft products for Ginna PI Asset Framework (PI AF) to catalog plant assets, PI Vision to visualize data
- Summer/Fall 2016 staged server at Cantera, PI System installation and configuration – test the concept with ~100 tags & 2-3 with live data
- Winter/Spring 2017 expanded OSIsoft license, completed tags configuration (~3000 tags)
- Mar-2017 completed transfer of archived PPC data (last 5 years) into PI System & PI Data historian goes live along with updated PPC
 - Jun-2017 server moved to Ginna, user training #1 by Exelon+OSIsoft on a "test group" of about 15 Ginna users
 - Nov-2017 user training #2 on expanded group of another about 50 users from engineering

- During the 1st year continued to build PI AF with emphasis to use cases and plant operation priorities & we targeted individuals in need directly
 - Popularized PI Data Historian within corporation Exelon Operation Center @ Baltimore (plant operation indicators for grid monitoring)
 - Trained PI System Engineering Liaison to assist with PI Vision introduction at Ginna
 - AF: Control Rods, Turbine Generators, Residual Heat Removals
- During the 2nd year expanded and built more PI Vision displays, continued to expand PI AF, PI System became dominant plant data historian source for historical & real-time data
 - Implemented simple data analyses & notifications
 - Server refresh (more CPU + RAM + disk space)
 - AF: MET Data, Instrument Air, Reactor Protection, Generator Vibration Sensors

Presence (2019/2020)

- Provide training PI System Operation Liaison and introduce PI Vision to operation personnel (Control Room, AUX Operators – operator rounds)
- Setting up operation training pilot test group for PI Vision
- Building/customizing training materials (use cases)
- Evaluating test group's experience with PI Vision
 - Adjust and then train both licensed and non-licensed (AUX) operators
 - Use of examples from their daily tasks since these two groups would be using PI Vision in slightly different fashion given their plant operation functions

Future (2020/2021)

- Provide training to PI System Shop Liaison assist with PI Vision introduction to other departments – "shops"
 - Integrated Maintenance Dept. (IMD), Fix It Now (FIN), Instrument & Control Electricians, Radiation Protection (RP), Emergency Preparedness (EP)
- Again setup training pilot to test group(s), build PI Vision training materials reflecting IMD/FIN/RP/EP daily tasks, utilize more/new use cases
- Work with IMD to expand PI System (more tags) to aid troubleshooting of I/O DAS issues related to PPC

Perspective (2021+)

- Vision of PI Vision re-training periodically (quarterly or annually) to refresh and retain application knowledge
- Development of more sophisticated analysis-type displays for engineering and other departments
- Development of troubleshooting-type displays for shops
- Continue using PI Vision, expanding PI AF, expanding system specific displays
- Inspiration for other Exelon Nuclear site(s)...
 - Environment setup/staging within a few days
 - PI AF construction and improvement is ongoing process

Data Flow / Configuration

Asset Framework

 PI AF is being continuously updated to include more

plant systems

 Driven by users' demand and use cases

File Search View Go Tools Help

📵 Database 🛗 Query Date 🔻 🕔 💋 🎧 Back 🔘 🖳 Ch

Asset Framework

- Once assets are configured, we continue to design and build systemspecific PI Vision displays allowing users to take advantage of PI Vison during their day-to-day business
- Users are **encouraged to explore PI Vision capabilities** and create their own PI Vision displays

PI Vision Displays

PI Vision Displays

PI Vision Displays

Use Case: Rods Anomaly

- Business investigated sudden movements of rods (appeared to step down)
- System Engineer (SE) needed to know when these movements occurred, which rods appeared to move in order to make correlation with changes of plant parameters
- Information was available in PPC but not easy to correlate and gather statistics
 - PI AF Asset → Analyses → email notifications
 - Backfill to past data (last 5 years)
 - Need to introduce more PPC points and PI tags (rods voltages)
- Conclusion: problem originated upstream in MRPI cabinets located in the containment; boards in MRPIs provide voltage readings to PPC DAS I/O and something was causing fake voltage spikes, which was exhibited as if rods were moving
 - Vendor to debug and install new monitoring equipment to scrutinize the source of spikes

Use Case: Rods Anomaly

Use Case: Instrument Air

- Track Instrument Air Header Pressure Leak
- Looking for an indication of a leak while it is still developing
- Information available in PPC but sifting through historical data proven to be challenging
- Would it be possible to detect the leak looking at just air header pressure in real time?

18

Use Case: Instrument Air

- When there is a leak the slope of the air header pressure is different
- Loosing pressure faster, taking longer to pressurize back to its nominal value

Use Case: Instrument Air

Use Case: MET Loss of Power

- MET (Meteorological Tower) data to PPC intermittent interruptions when power outage incidents occurred, during backup generators startup times (e.g. power lines down due to high winds)
- Need to know which data train is affected (A or B or both?), for how long, and why
- Any common pattern?
 - PI AF Asset → Analyses → email notifications
 - Backfill to past data (last 5 years)
- **Conclusion**: system engineer was able to relate these data flow interruptions to fiber converter intermittent power loss, which was interrupting socket connections for MET data flow & PPC data logger, resulting in no data in PPC. It took 2h 10min for the socket to reconnect. New UPS was introduced to sustain fiber convertors through unexpected power losses.

Use Case: MET Loss of Power

Use Case: MET Loss of Power

CHALLENGES

- Non-compatibility of new data historian SW vs. legacy one
- Conversion of legacy archives into new format / accessibility of old archives stored on tapes

SOLUTION

- Choose PI System as new site-wide historian compatible with new and legacy SW
- Utilize of existing HW and PI license
- IT initiative (level of effort), but emphasis on business buy-in and engagement

BENEFITS

- Eliminating one-off/unique solution within Exelon fleet
- Generalization and conversion to few types of data historians with simpler thus better & more efficient fleet-wide support
- Newer (modern) visualization tools and faster access to historical data
- Simpler/customizable asset monitoring, acceleration of root cause analyses

Exelon Genco BSC Miroslav Kopál Lead IT Analyst

Ginna PI Vision Strategy

- Miroslav Kopál
- Lead IT Analyst
- Exelon Genco BSC
- miroslav.kopal@exeloncorp.com
- Craig Crandall
- Lead IT Analyst
- Exelon Genco BSC
- craig.crandall@exeloncorp.com

Questions?

Please wait for the **microphone**

State your name & company

Save the Date...

AMSTERDAM October 26-29, 2020

KÖSZÖNÖM MULŢUMESC GO RAIBH MAITH AGAT NATION OF THE STATE OF ДЗЯКУЙ TAKK SKAL DU HA **MERC RAHMAT** MATUR NUWUN CẨM ƠN BẠN **UATSAUG RAU KOJ**

