High-Performance Microgrids, DERMS, and the Changing Future of Grid Controls

Recent Natural Disasters Population Affected Jimtown 1 - 49 50 - 499 500 – 4,999 5,000+ St Helena 128 Rutherford Santa Rosa Rohnert Park Penngrove

Ambitious Campus Goals

Establishing a

Culture of

Sustainability

Zero Net Energy
District Source
by 2030
(across building portfolio)

Carbon Neutral Operations by 2030 Zero Net Non-Potable Water by 2030

Urban Microgrid Project Objectives

GHG Emissions Reductions

 Demonstrate how a microgrid can help drive GHG emissions reductions

Operational Savings (utility expense & labor)

- Explore and test value streams for microgrids
- Test the business case for advanced microgrids for California Community Colleges

Resiliency, Reliability, & Power Quality

- Develop a model for flexible and adaptable systems
- Provide educational resource for future trade education programs
- Improve and support organizational / academic continuance

A Changing Grid Requires New Solutions

Advanced Controls enable renewable integration and provide resiliency, reliability and cost savings

The Foundation of PXiSE Control Architecture

Orchestration of DER to Deliver Affordable and Reliable Power

One Platform, Many Solutions

PXiSE Energy Solutions

DER Control

Realize savings with peak shaving, demand response, and grid services

Renewable **Power Plant** Control

Ensure resilience and optimal power quality

Microgrid Controller

Reduce integration costs and boost revenue

Distributed Energy Resource Management (DERMS)

Maximize system efficiency and reliability

Microgrid Configuration

Existing Infrastructure

- 5 Feeders owned by SRJC, single point of interconnection w/ PG&E
- 218kW PV in 2 locations
- Backup DG
- Thermal Energy Storage
- Total site load: 800kW to 2.6MW

Capital Improvements

- Demo 2 Buildings and unpermitted PV
- Construction of 2 new structures
- New Central Plant with 600kW electric boiler

Proposed Grant Additions

- 2MW, 2MWh additional storage in 2 locations
- Microgrid control (PXiSE) of DERs
- Intelligent load management & submetering
- Active feeder interconnection
- Integration with HVAC EMS for DR and load enable

Installed DERs

- 2.5MW of PV, distributed on 3 feeders
- 1MW, 2MWh energy storage on feeder 3

Resiliency Dispatch

PIWorld SAN FRANCISCO 2020

How We Prioritized Buildings

Organizational Continuance Priorities

- 1. Primary level one services
 - Public safety, student support spaces, data center, financial aid, payroll
- 2. Secondary level services
 - Teaching classrooms for in person and online, student support services, basic needs resource center, Student Health Services
- 3. Academic buildings that serve the most classes year round
- 4. Other classroom buildings

Solar + Storage Solution at SRJC

- Expected Solar Production: ~4 GWh / year
 - ~36% offset of total campus kWh energy use
- Expected Energy Savings: \$330K / year
- Expected Demand Savings: \$170K / year
- Expected Demand Response Revenue: \$50K / year

The Key to Meeting Ambitious Campus Goals

GHG Emissions
Reductions

Operational Savings (utility expense & labor)

Resiliency, Reliability, & Power Quality Zero Net Energy
District Source
by 2030
(across building portfolio)

Carbon Neutral
Operations by
2030

The Future of Grid Management

Advanced controls are a tool to integrate and orchestrate a diverse set of energy resources while ensuring system balance, power quality, and reliability.

Global Projects and Partners

Island Microgrid

500 kW solar

600 kW wind

1.2 MW of battery storage

Technical Objective

Provides precise ramp control to smooth wind power production

Customer Motivations

- Increases revenue and maximizes renewable output with energy shifting and peak management
- Be a carbon-free UNESCO World Heritage Site island by 2030

Western Australia DERMS

8 1-MW natural gas-fueled generators

1-MW diesel-fueled generator

1-MW solar power generation

2-MW/1.25 MWh battery storage

Technical Objective

Integrate hundreds of customer DERs with utility assets

Customer Motivations

- Decrease electricity generation costs and provide more sustainable electricity
- Provide reliability and stability to the grid across the utility's vast territory

Speaker Information

- Patrick Lee
- President, CEO & Co-Founder
- PXiSE Energy Solutions
- Patrick.Lee@pxise.com
- David Liebman
- Energy & Sustainability Manager
- Sonoma County Junior College District
- DLiebman@santarosa.edu

Questions?

Please wait for the **microphone**

State your name & company

Save the Date...

AMSTERDAM October 26-29, 2020

Summary

PXiSE Energy Solutions

CHALLENGES

- Santa Rosa Junior College (SRJC) is determined to be resilient when faced with natural disasters that disrupt operations.
- SRJC sought a solution that aligns with ambition carbon-free campus goals.
- Worldwide, operators struggle to find solutions to overcome grid instability and poor power quality.

SOLUTION

- PXiSE Energy Solutions partnered with SRJC to deploy a microgrid controller to manage renewable energy generation resources and provide resiliency when faced with grid interruptions
 - PXiSE Microgrid
 Controller will scale to
 allow for campus wide
 integration in project
 phases

BENEFITS

- SRJC is on the path to meet carbon-free campus goals
- Reduced GHG emissions by integrating high levels of renewables
- Enabling campus-wide resiliency, reliability, and improved power quality
- Operational costs reduced with expected energy savings of \$330,000 per year

"PXiSE is proud to partner with SRJC and many other clients around the world to enable them to meet their energy needs. We strive to support a holistic project design that meets the client's economic and climate goals, and ensure a successful deployment. Our technology will scale with each project to accommodate the addition of more solar, storage, and generation."

- Patrick Lee, CEO, PXiSE Energy Solutions

