

# A new waste treatment technology for cleaner waters

PI System deployment to accelerate R&D on a pilot plant

**David BALLENGHIEN** 





### Developing world: a global sanitation and waste crisis

**4.5 billion** people lack access to safely managed sanitation



**2<sup>nd</sup>** leading cause of death of children under 5





**90%** of plastic polluting our oceans comes from just 10 rivers



# Developed world: the threat of emerging contaminants

► WWTFs generate biosolids as by-product.

Biosolids are generally land applied or landfilled.

Non-biodegradable compounds accumulate in the environment, causing adverse health effects.







### What do we do?

"We cannot solve our problems with the same thinking we used when we created them."

Albert Einstein

### What if we had a superior waste treatment...

- ▶ ... that could handle **sewage** sludge, **plastics**, **persistent contaminants** and **hazardous chemicals**?
- …that is suited for decentralized and community-based operations?
- …that allows for by-products and energy valorization?
- …that is very compact, containerized and suited for fast deployment?

### SCWO is simple!



SCWO converts wet organic waste into clean water, heat, electricity and CO<sub>2</sub> in seconds!



### Beyond the critical point... a new chemistry begins!



- ➤ Supercritical water has similar strength as acetone to dissolve organic compounds
- ► High concentration of free radicals makes it very reactive
- Oxygen is fully soluble in it
- ► In supercritical water, hydrolysis and oxidation reactions are very fast!



# SCWO project at Duke University- Video







### Outstanding benefits

► A fully functional prototype in a 20" container, with a capacity of 1 ton/day (fecal waste of ~1000 people/day)

► The project started in 2013, funded by the **Gates**Foundation as part of the *Reinvent the Toilet* challenge



Primarily addresses 3 UN Sustainable Development Goals







- ✓ Compact
- ✓ Complete elimination of pathogens and pollutants
- ✓ No odor and pollution
- ✓ Energy efficient, scalable
- ✓ Can co-treat hazardous waste





# Experience

Dewatered secondary sludge



Food waste



Waste activated sludge (WAS)



Primary sludge



- Isopropyl alcohol (IPA)
- Diesel
- Waste motor oil
- Vegetable oil, spent cooking oil
- Landfill leachate
- ► Plastic (PET, PE)
- FOG (Fat, Oil and Grease)
- Industrial wastewater (semiconductors)

### Typical removal efficiency

• Organics: 99-99.99%

Total Nitrogen: 50-98%

Total Phosphorus: 73-99%





### Excellent treatment of persistent contaminants

PFAS, aka "the forever chemicals"

| Biosolids type                | Primary sludge |
|-------------------------------|----------------|
| Initial PFOS                  | 748,000 ppt    |
| Effluent PFOS                 | 0.73 ppt       |
| PFOS removal efficiency       | 99.999%        |
| Total PFAS removal efficiency | 99.88%         |



➤ Superior treatment was also demonstrated with Ibuprofen, Acetaminophen and Triclosan (> 99.9% removal in all cases)





### Medium term vision: decentralized superior treatment



# History and feedback

- Contacted OSIsoft in January 2019.
- ▶ PI System was deployed by **April 2019**.
- Now in use for real-time process monitoring and post-run data analysis.
- ▶ The team loves the ease of use of PI Vision and PI Datalink.

▶ PI System makes the whole R&D process more efficient.



### Control and automation

- ~120 physical tags
- Sensors (temperature, pressure, gas, levels)
- Flowmeters
- VFDs
- Control valves and back pressure regulator
- ON/OFF valves
- ► Allen-Bradley PLC
  OPC DA interface with PI Server was swift to implement











### Dashboard for real-time and historical data visualization







### Chemical analysis: manually uploaded datasets







### PI Event Frames: benchmark transient phases

- ► We use PI Event Frames to monitor transient phases
- ▶ PI Event Frames is also convenient to monitor equipment run time







# KPIs: radar plots (PIthon & AF SDK)









### Streamline data handling

#### **CHALLENGES**

- Process data was stored in csv files
- Data handling was manual and time consuming
- HMI did not allow for graphs display

#### **SOLUTION**

Using PI System

#### **BENEFITS**

- SAVE TIME
- Complements the HMI
- Centralize and secure data storage
- Build up experience
- Automate data treatment







We achieved major milestones in terms of process reliability, performances, understanding and know-how. The PI System was instrumental in this process.







# Speaker contact



**David BALLENGHIEN** Research Associate **Duke University** david.ballenghien@duke.edu

### Questions?

Please wait for the **microphone** 

State your name & company

### Save the Date...



AMSTERDAM October 26-29, 2020



### **KEA LEBOHA**

DZIĘKUJĘ CI S NGIYABONGA D TEŞEKKÜR EDERIM YY (IE TERIMA KASIH

IBH 고맙습니다 MISAOTRA ANAO

DANKON

KÖSZÖNÖM

БЛАГОДАРЯ

ТИ БЛАГОДАРАМ  $\stackrel{>}{\xi}$ 

TAK DANKE \$\frac{1}{2}\$

**MERCI** RAHMAT

HATUR NUHUN

OSIsoft.

MULŢUMESC

ESKERRIK ASKO

ХВАЛА ВАМ

TEŞEKKÜR EDERIM

**GRATIAS TIBI** ДЗЯКУЙ ΕΥΧΑΡΙΣΤΩ **DANK JE** 

AČIŪ SALAMAT MAHALO IĀ 'OE TAKK SKAL DU HA

GRAZZI PAKKA PÉR

PAXMAT CAFA

ありがとうございました
SIPAS JI WERE TERIMA KASIH
UA TSAUG RAU KOJ
ТИ БЛАГОДАРАМ
СИПОС





ĎAKUJEM

MATUR NUWUN

### A one step continuous process







# Progress to date



- Operating & safety procedures
- Construction
- Commissioning

2014

- - Solids testing 7
    - New reactor design

2016

- Reliability testing prototype A
- Commercial development

2018-2019



2013

- Reactor design
- Electrical & control design
- Procurement

2015

- Liquids Testing
- Aspen Plus

modeling

Slurry handling

2017

- Energy recovery investigation
- New slurry pump
- Prototype B design

2020

- Commercial development
- Process optimization



