Best Practices for Making Advanced Analytics Relevant

Curt Hertler

Principal Pre Sales Engineer
OSIsoft

Workbench for Relevant Operational Analytics

Data Engineering and Preparation

PI System offers distinctive features for preparing time-series data for advanced analytics, e.g. asset context, process context and feature generation.

Access, Analysis and Model Enablement

PI System provides multiple data access methods, meeting needs of data engineers or scientists.

Testing, Evaluation and Operationalization

- Asset Analytics plays an essential role in testing and evaluating developed models.
- PI Vision and Future Data support model integration and socialization for gaining relevance within Operations.

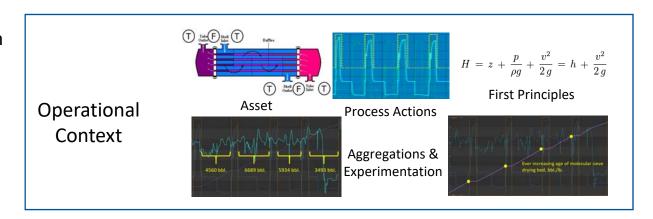
Accountability

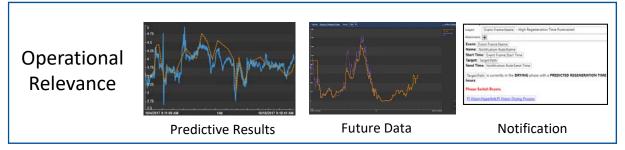
PI System provides verification of improvement benefits

Data Engineering and Preparation

Real Time Data is Different

- Transactional data is recorded in a tabular format with values associated by columns in each row.
- Real-time data is recorded with only time context, i.e. value and timestamp.
- Full-featured "observations" are required for analytics.

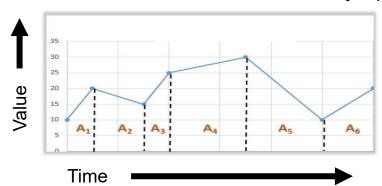

56.902 03-SEP-2016 11:23 AM



Prepare Operational Data for Experimentation

- Sensor data unevenly timestamped
- Domain experts supply known relationships and impacting features
- Features and labeled events are added by backfilling in Asset Analytics
- Benefit for Operations and advanced analytics
- Prepared features persist for model operationalization and notification

63.781 3/9/16 11:19 AM 56.902 3/9/16 11:23 AM 58.341 3/9/16 11:41 AM

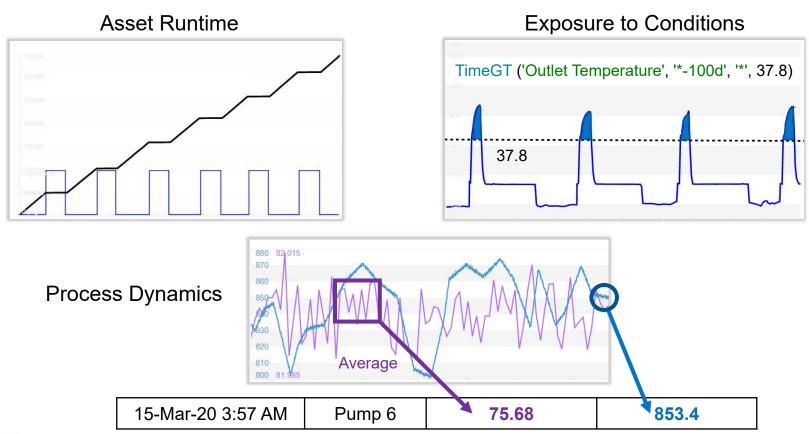


Aggregations and Units of Measure Observance

Unevenly Spaced Events

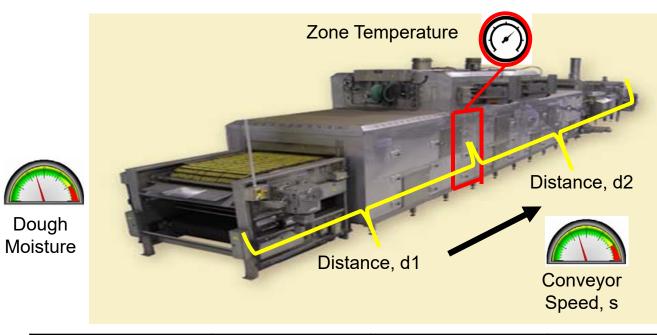
Correct: Time-weighted Average = 20.208

Incorrect: Arithmetic <u>10 + 20 + 15 + 25 + 30 + 10 + 20</u> = 18.571


Measured Rates Converted to Totals

Time Stamp	Value	Units	Gallons	
7/5/2017 8:00	8,828.5	gal/d	0.0	
7/5/2017 8:20	8,845.1	gal/d	122.8	
7/5/2017 8:40	8,861.6	gal/d	123.1	
7/5/2017 9:00	8,894.8	gal/d	123.5	
7/5/2017 9:20	9,045.2	gal/d	125.6	
7/5/2017 9:40	9,171.3	gal/d	127.4	
7/5/2017 10:00	9,199.9	gal/d	127.8	
	62,846.4		750.2	gal

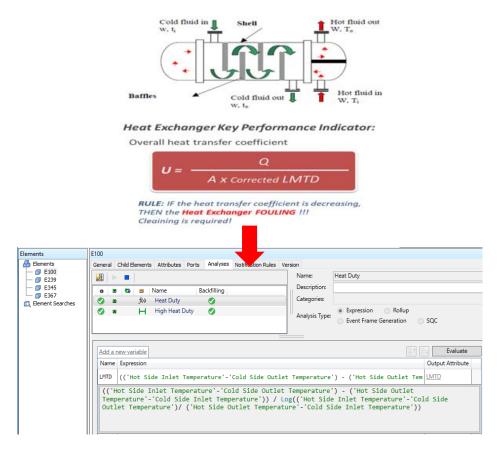
Correct: Unit Conversion Total = 750.2


Incorrect: Arithmetic Sum = 62,846.4

Time at State and at Conditions, Dynamics

#PIWorld

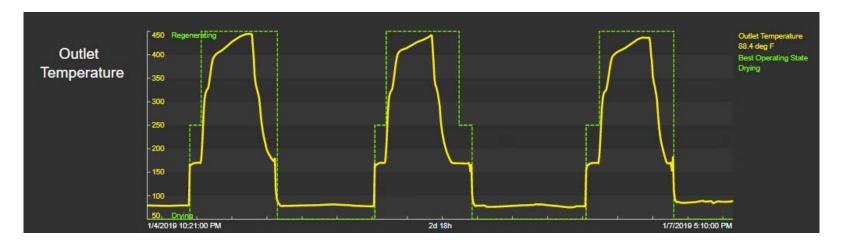
Dynamics: The Way the Cookie Crumbles


Coo	kie
Qua	lity

Modelling Phase	Moisture	Temperature	Quality
Training Observations	* - (d1 + d2) /s	* – d2 / s	*
Prediction	*	* + d1 / s	* + (d1 + d2) /s

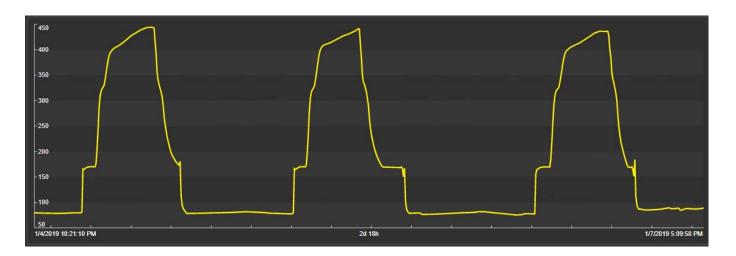
First Principles Analytics - Asset Analytics

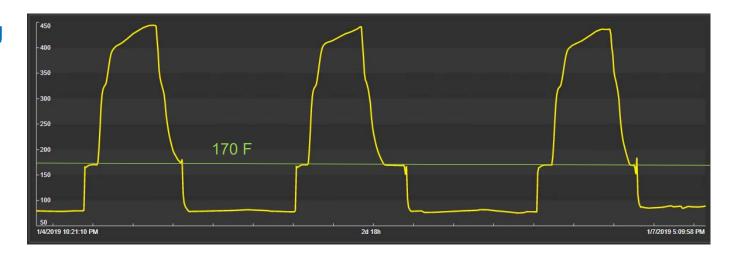
- Configure calculations for transparency and scale
- Math, statistical, logical and steam table functions
- Predictive algebraic analytics
- Future data for forecasting
- Backfill! Backfill! Backfill!



Label Time Ranges of Interest – *Event Frames*

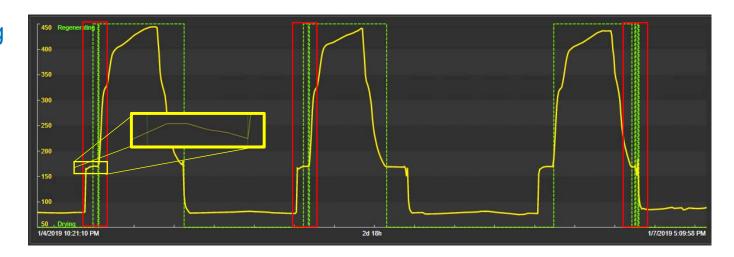
Filter				
□ 🖥 Name	Duration	Start Time	End Time	4
■ 🖈 Dryer A Regeneration Cycle 01-04-19 03:06	9:54:00	1/4/2019 3:06:00 AM	1/4/2019 1:00:00 PM	
🗷 🖈 💳 Dryer A Regeneration Cycle 01-05-19 04:30	8:42:00	1/5/2019 4:30:00 AM	1/5/2019 1:12:00 PM	
■ 🖈 Impryer A Regeneration Cycle 01-06-19 01:36	8:18:00	1/6/2019 1:36:00 AM	1/6/2019 9:54:00 AM	




Data Engineering Process

Data Engineering Process

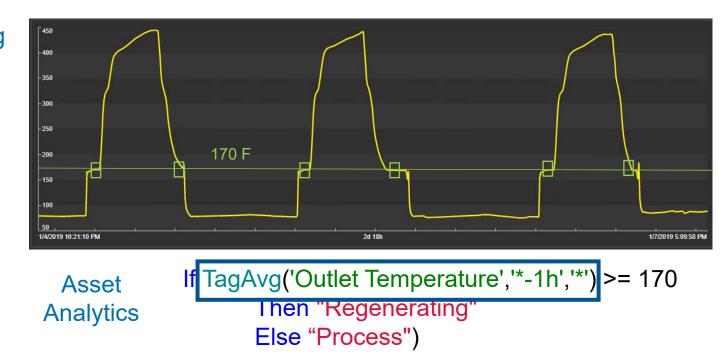
First Backfill


Asset Analytics If 'Outlet Temperature' >= 170
Then "Regenerating"
Else "Process"

Data Engineering Process

First Backfill

"False Starts"

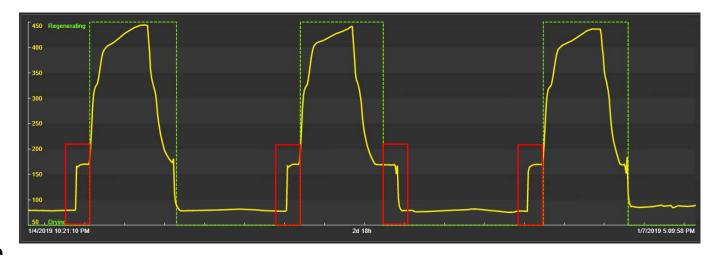


Data Engineering Process

First Backfill

"False Starts"

Second Backfill


Data Engineering Process

First Backfill

"False Starts"

Second Backfill

Missing third "Standby" State

Data Engineering Process

First Backfill

"False Starts"

Second Backfill

Missing "Standby" State

Third Backfill

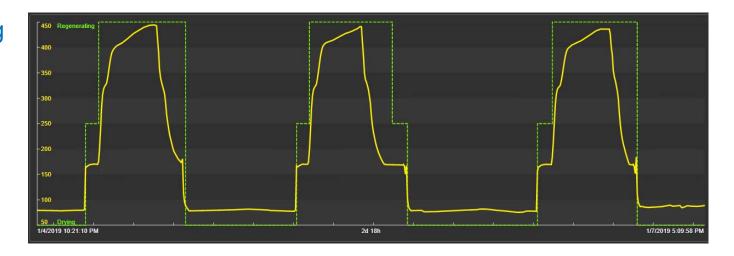

```
Asset Analytics
```

```
If TagAvg('Outlet Temperature','*-1h','*') >= 170
Then "Regenerating"

Else (If 'Outlet Temperature' >= 120
Then "Standby"
Else "Process")
```

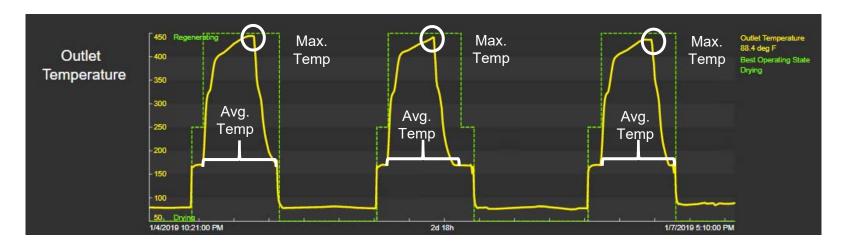

Data Engineering Process

First Backfill

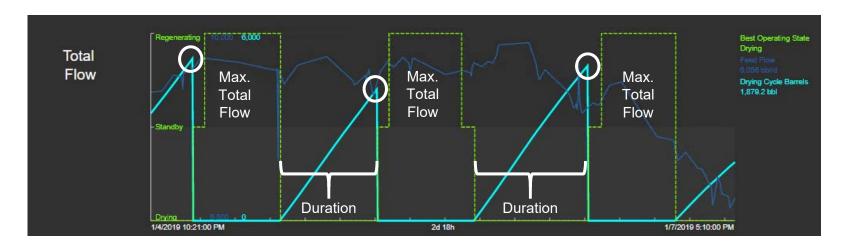

"False Starts"

Second Backfill

Missing "Standby" State

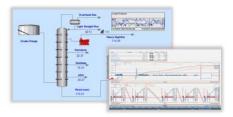

Use it!

Complete Observation with Event Frame Attributes


Filter					
■ Name	Duration	Start Time	End Time	Avg Outlet Temp	Max Outlet Temp
🗷 🖈 Dryer A Regeneration Cycle 01-04-19 03:06	9:54:00	1/4/2019 3:06:00 AM	1/4/2019 1:00:00 PM	324.4 deg F	444.3 deg F
🗷 🖈 Dryer A Regeneration Cycle 01-05-19 04:30	8:42:00	1/5/2019 4:30:00 AM	1/5/2019 1:12:00 PM	346.9 deg F	444.3 deg F
■ 🖈 ├─ Dryer A Regeneration Cycle 01-06-19 01:36	8:18:00	1/6/2019 1:36:00 AM	1/6/2019 9:54:00 AM	339.0 deg F	441.3 deg F

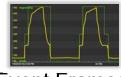
Complete Observation with Event Frame Attributes

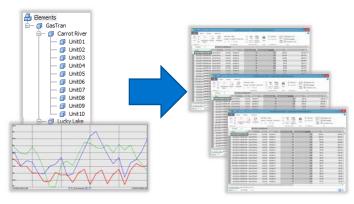
Filter							
□ 🗟 Name	Duration	Start Time	End Time	△ Avg Outlet Temp	Max Outlet Temp	Drying Cycle Duration	Drying Cycle Barrel
🗷 🖈 💳 Dryer A Regeneration Cycle 01-04-19 03:06	9:54:00	1/4/2019 3:06:00 AM	1/4/2019 1:00:00 PM	324.4 deg F	444.3 deg F	13.8 h	5259.6 bbl
🗷 🖈 💳 Dryer A Regeneration Cycle 01-05-19 04:30	8:42:00	1/5/2019 4:30:00 AM	1/5/2019 1:12:00 PM	346.9 deg F	444.3 deg F	14.0 h	5189.7 bbl
■ 🖈 Impryer A Regeneration Cycle 01-06-19 01:36	8:18:00	1/6/2019 1:36:00 AM	1/6/2019 9:54:00 AM	339.0 deg F	441.3 deg F	11.1h	4207.6 bbl


Access, Analysis and Model Enablement

Enabling Analytics for Operational Intelligence

Real-Time Decision Analysis


Retrospective & Predictive Analysis

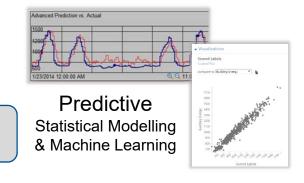

Diagnostic
Trending & Awareness

$$Q=rac{\Delta P_{DD}*kh}{141.2\mu B_0\Big\{lnrac{r_e}{r_w}-rac{3}{4}+S\Big\}}$$

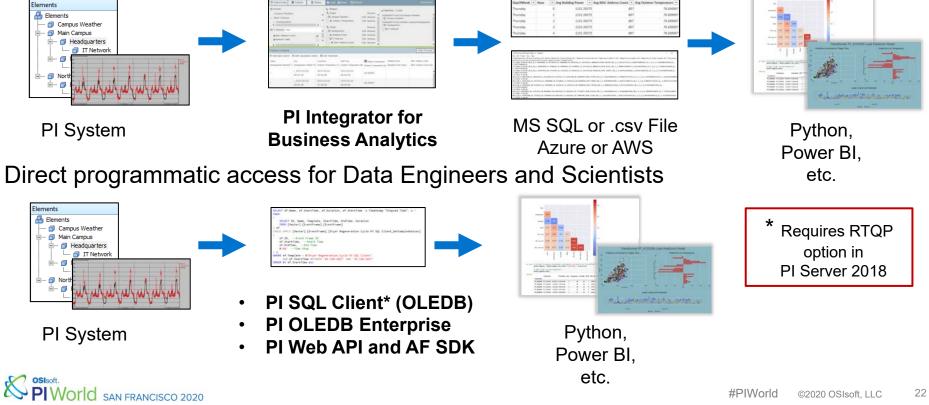
Descriptive
Condition & Performance

Event Frames

Time, Event and Asset Context


Tabular Context

Common Ground between Technological Contexts


Visual
Dashboards &
Multidimensional Assessment

#PIWorld

Open Data Access for Advanced Analysis Tools

Self-service access for Everyone

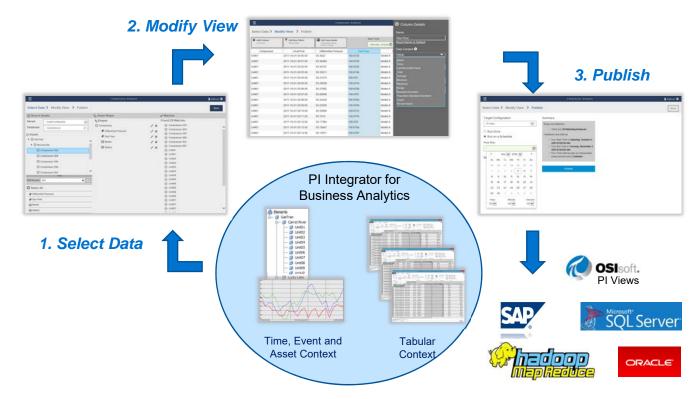
#PIWorld

Easy, scalable way for users to create contextualized views of operational data.

- Select assets and their attributes from an AF hierarchy.
- Modify view by setting time range, row interval, and column aggregations.

Add filtering rules to "cleanse" data.

 Publish once or on a scheduled bases.

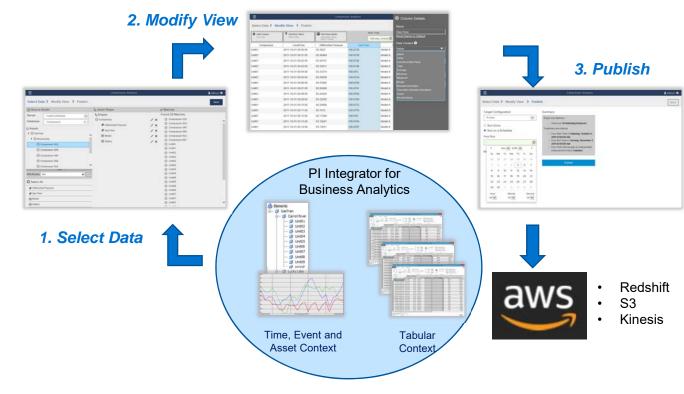


Easy, scalable way for users to create contextualized views of operational data.

- Select assets and their attributes from an AF hierarchy.
- Modify view by setting time range, row interval, and column aggregations.

Add filtering rules to "cleanse" data.

 Publish once or on a scheduled bases.

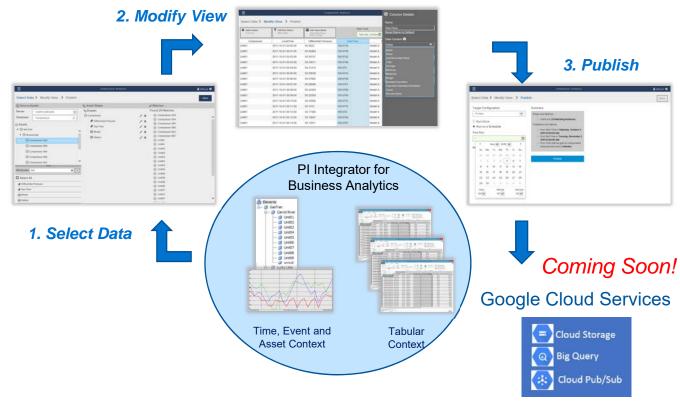


Easy, scalable way for users to create contextualized views of operational data.

- Select assets and their attributes from an AF hierarchy.
- Modify view by setting time range, row interval, and column aggregations.

Add filtering rules to "cleanse" data.

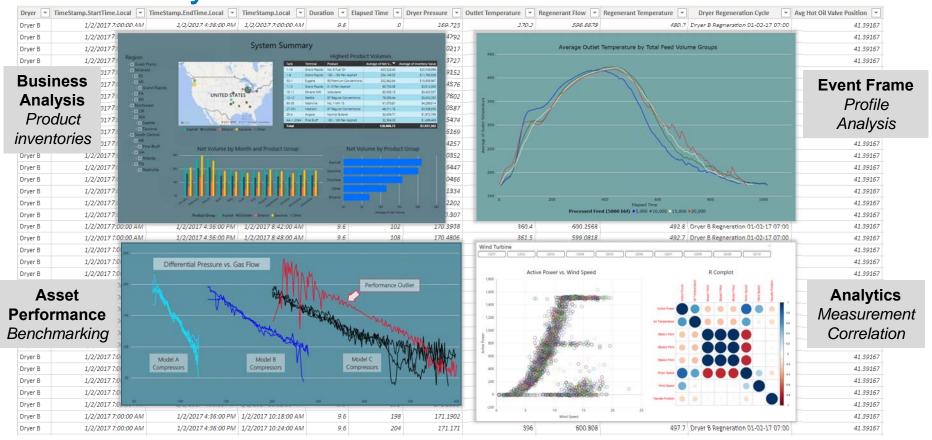
 Publish once or on a scheduled bases.



Easy, scalable way for users to create contextualized views of operational data.

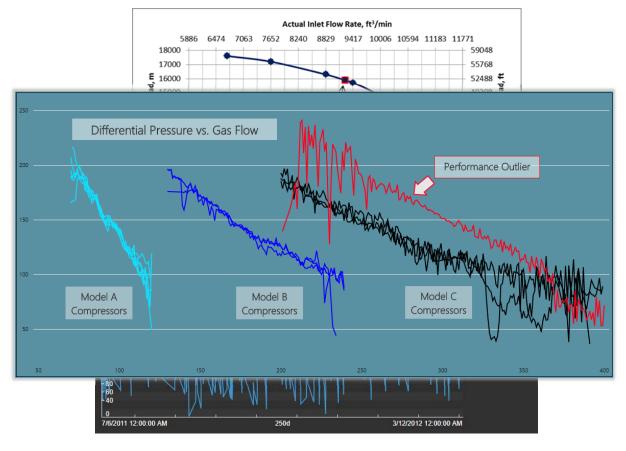
- Select assets and their attributes from an AF hierarchy.
- Modify view by setting time range, row interval, and column aggregations.

Add filtering rules to "cleanse" data.


 Publish once or on a scheduled bases.

#PIWorld

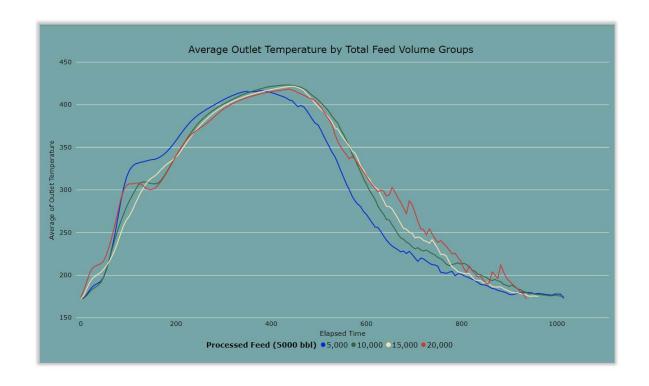
Visual Analytics – Multidimensional Tools



27

Visual Analytics – Asset Benchmarking

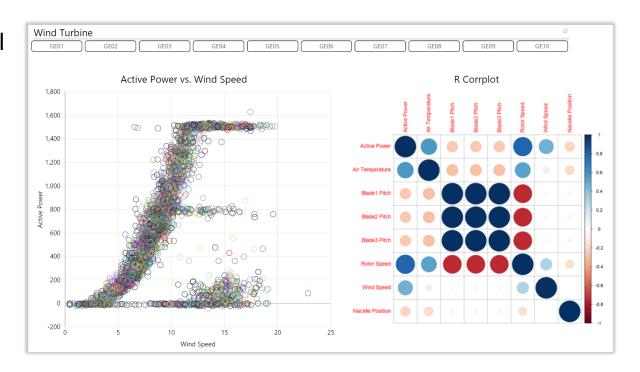
Benchmark <u>all</u> similar assets against know performance characteristics.


- Real-time trend of one asset is essential for current operation.
- Different tools required to analyze groups of assets.
- PI Asset Views summarize months of actual operations exposing actual performance profile.

Visual Analytics - Event Frame Evaluation

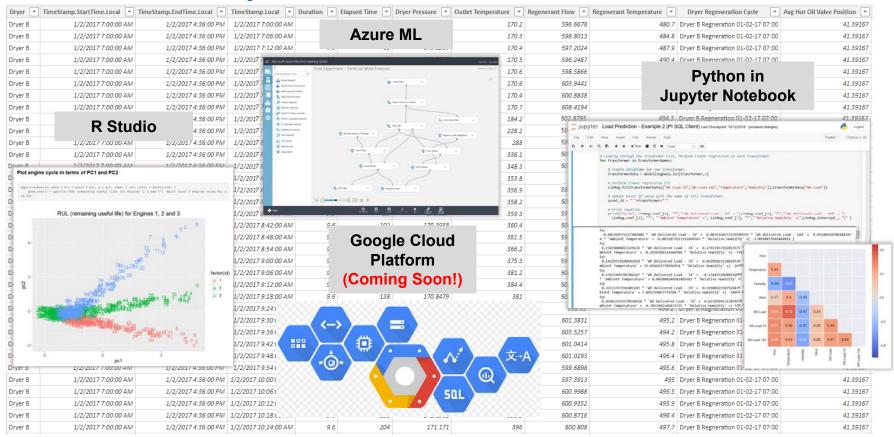
- Sampled Event View dataset imported into Power BI.
- Shows 200 Event Frames grouped by Event Frame Attribute.

Sampled Event View


	Dryer	Time Stamp	Duration	Elapsed Time	Dryer Pressure	Outlet Temperature	e Regenerant Flow	Regenerant Tempe	Dryer Regeneration Cycle	Avg Outlet Temp	Avg Regen Temp	Dryer Processing Age	Total Pro
_	Dryer A	1/2/2017 12:00:00 AM	5.3	0	170.4697	436.9	603.2525	496.1	Dryer A Regneration 01-02-17 00:00	319.9179	229.7132	0.0005072668	4474.716
- [Dryer A	1/2/2017 12:06:00 AM	5.3	6	170.4824	437.8	603.6448	496.2	"	"	"	"	"
	Dryer A	1/2/2017 12:12:00 AM	5.3	12	170.495	438.6	605.063	496.4		"	"	"	
	Dryer A	1/2/2017 12:18:00 AM	5.3	18	170.5076	439.5	599.6411	496.8	<u>"</u>	"	"		
				:						"		"	"
		:		:	:	•	:	:			"	"	"
١	Dryer A	1/2/2017 5:18:00 AM	5.3	318	204.1571	173.8	314.5962	287.9	"	"	"	"	"
-	Drver B	1/2/2017 7:00:00 AM	9.6	0	169.723	170.2	596.6678	480.7	Dryer B Regneration 01-02-17 07:00	357.6974	404.2589	0.05128649	2742.962
- 1	Dryer B	1/2/2017 7:06:00 AM	9.6	6	170.4792	170.3	598.8013	484.8					
	Dryer B	1/2/2017 7:12:00 AM	9.6	12	171.0217	170.4	597.2024	487.9	"	"	"	"	"
ľ									"	"	"	"	"
				•	•	•		:	"	"	"	"	"
		•	•	•	•	•	•	•	"	"	"	"	"
	D D	1/2/2017 4:36:00 PM	9.6	576	168.8051	174.9	896.8521	173.8	"	"	"	"	"
	Dryer B Dryer A	1/2/2017 4:36:00 PM	11.3	0	168.8051	174.9	596.4086	173.8 425.6	Dryer A Regneration 01-02-17 19:00	332.5292	364.0818	0.1004348	5302.277
- 1	Dryer A	1/2/2017 7:06:00 PM	11.3	6	170.3642	170.1	598.5709	442.7	Diyer A Regileration 01-02-17 13.00	002.0232	004.0010	0.1004040	0002.211
- 1	Dryer A	1/2/2017 7:12:00 PM	11.3	12	170.2456	170.2	600.7331	466.3	"	"	"	"	"
	Differ / C	172720 11 1.12.00 1 M	11.0	12	170.2400	170.2	000.7001	400.0	"	"	"	"	"
			: •	: .	: :	: :			"	"	"	"	"
		:	:	:	:	:	:	:	"	"	"	"	"
					:		:		"	"	"	"	"
_	Dryer A	1/3/2017 4:54:00 AM	11.3	594	167.147	196.4	547.8572	173.4	:	:	:	:	-
- 1	Dryer B	1/3/2017 8:48:00 AM	9.3	0	169.3378	170.2	592.8909	491.6	Dryer B Regneration 01-03-17 08:48	357.8753	399.4613	0.1699348	6347.083
- 1	Dryer B Dryer B	1/3/2017 8:54:00 AM 1/3/2017 9:00:00 AM	9.3	6 12	168.1517 167.7706	171.1 205.2	617.2303 617.502	490 488.7	"	"	"	"	"
	Diyei B	1/3/2017 9.00.00 AW	9.3	12	167.7706	205.2	617.302	400.7	"	"	"	66	"
- (: .		: :	: .	:	"	"	"	66	"
١		•	•	•	•	•			\	"	"	"	"
	\							/	\	"	"		"

San Francisco 2020

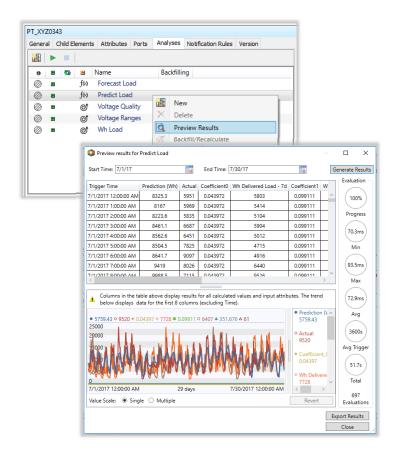
#PIWorld ©2020 OSIsoft, LLC


Visual Analytics - R and Python Integration

- Ad hoc, multidimensional front end for driving R and Python scripts.
- R "corrplot" to identify correlated variables.
- Identify data to be used for predictive model training.

Advanced Analytics - R Studio, Python, Azure ML, GCP

#PIWorld ©2020 OSIsoft, LLC

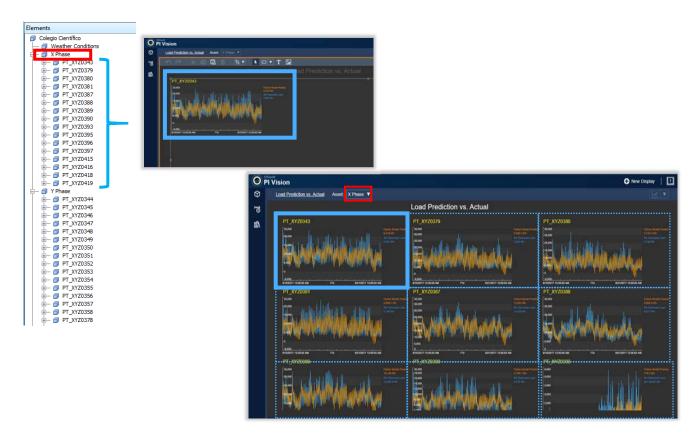

Testing, Evaluation and Operationalization

Testing and Evaluation: Asset Analytics

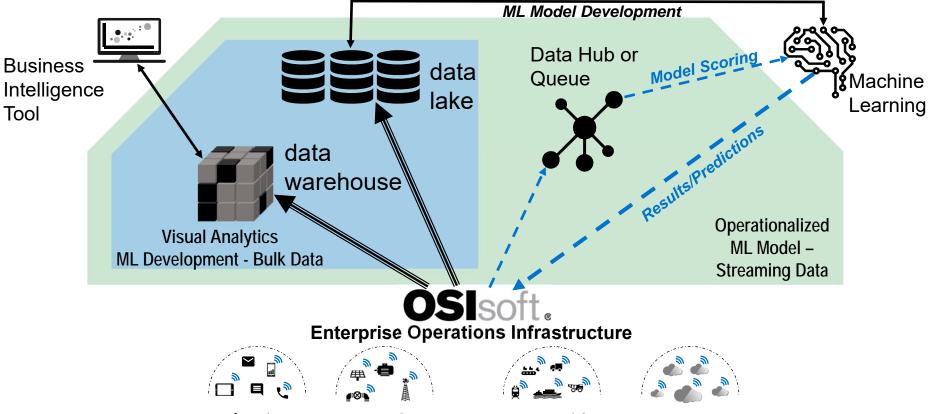
Preview Results

feature of Asset Analytics generates model results without posting values to PI Points

1	Α	В	С	D
1	Trigger Time	Prediction (Wh)	Actual	
2	7/1/2017 0:00	8325.3	5951	
3	7/1/2017 1:00	8167	5969	
4	7/1/2017 2:00	8223.6	5835	
5	7/1/2017 3:00	8461.1	6687	
6	7/1/2017 4:00	8562.6	6451	
7	7/1/2017 5:00	8504.5	7825	
8	7/1/2017 6:00	8641.7	9097	
9	7/1/2017 7:00	9419	8026	
10	7/1/2017 8:00	9988.5	7115	
11	7/1/2017 9:00	10458	11052	
12	7/1/2017 10:00	11710	13563	
13	7/1/2017 11:00	11126	11933	
14	7/1/2017 12:00	11666	11642	
15	7/1/2017 13:00	12935	10199	

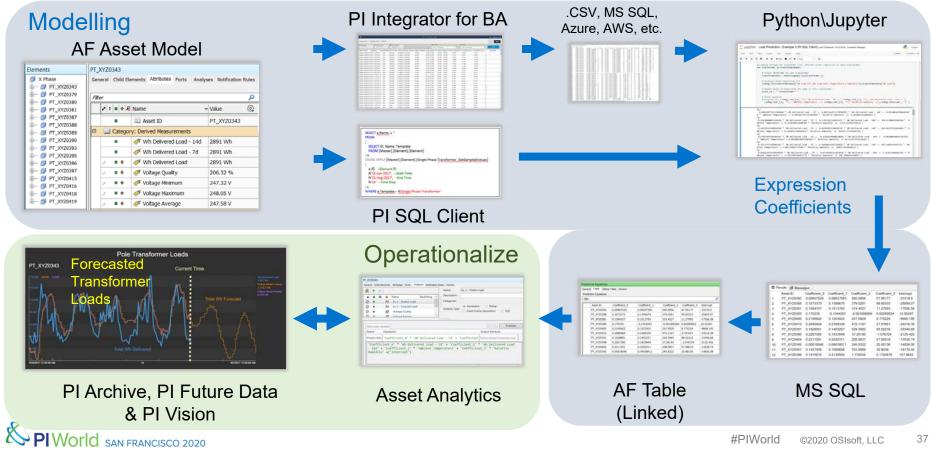

Export results for analysis in Excel.

Testing and Evaluation: Model Prediction vs. Actual


Backfill model results into PI Point

PI Vision
Collections
to inspect
model results

Operationalize - Advanced Analytics Patterns

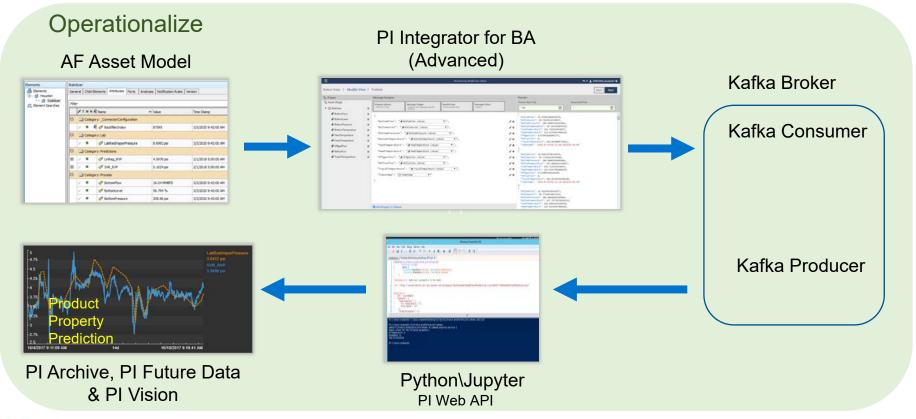

Assets

Automation Systems Edge Devices / Sensors IoT solutions

Example 1 – Expression-based Model

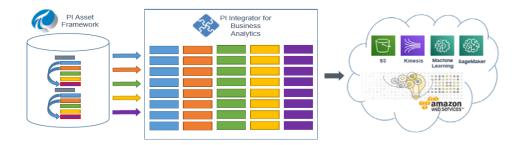
PI World 2019 - "Exploring AF Analytics for Advanced Analysis and Prediction"

Example 2 – Web Service Endpoint Model


PI World 2017 - "Create and Operationalize Forecasting Models with the PI Infrastructure and Azure Machine Learning"

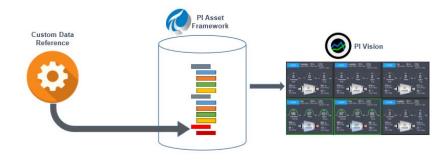
Example 3 – Streaming Analytic

PI World 2018 - "Apply Predictive Machine Learning Models to Operations"



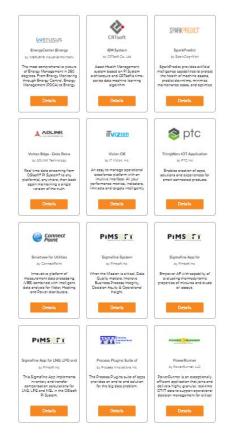
TransCanada – Gas Pipeline Demand Forecasting

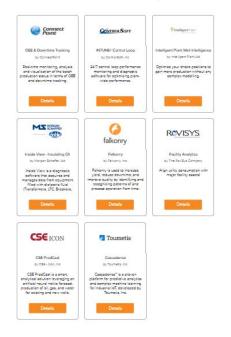
Navigating the Sea of Data


Feeding the Machine

Automating the Demand Forecast

Consuming the Results




https://www.osisoft.com/Presentations/TransCanada-s-Journey-to-Advanced-Analytics---Integrating-TransCanada-s-PI-AF-with-AWS-Machine-Learning/

OSIsoft Partner Ecosphere – "Advanced Analytics"

https://www.osisoft.com/marketplace/

Accountability

"PI Don't Lie"

Workbench for Relevant Operational Analytics

Data Engineering and Preparation

PI System offers distinctive features for preparing time-series data for advanced analytics, e.g. asset context, process context and feature generation.

Access, Analysis and Model Enablement

PI System provides multiple data access methods, meeting needs of data engineers or scientists.

Testing, Evaluation and Operationalization

- Asset Analytics plays an essential role in testing and evaluating developed models.
- PI Vision and Future Data support model integration and socialization for gaining relevance within Operations

Accountability

"PI don't lie."

Contact Info

- Curt Hertler
- Principal Pre-Sales Engineer
- OSIsoft, LLC
- Curt@osisoft.com

Questions?

Please wait for the **microphone**

State your name & company

Save the Date...

AMSTERDAM October 26-29, 2020

KÖSZÖNÖM MULŢUMESC GO RAIBH MAITH AGAT NATION OF THE STATE OF ДЗЯКУЙ TAKK SKAL DU HA **MERC RAHMAT** MATUR NUWUN CẨM ƠN BẠN **UATSAUG RAU KOJ**

