18/MAY/2022

Enerjisa Uretim - Digital Transformation with Senkron

Emin Onur Şahin & Kuzey Bener

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

About Our Company

Enerjisa Uretim

Vision

• To be an energy company that continuously develops its knowledge, sets standards and directs the future of the sector.

5 Different Technology

21 Power Plants ; 3 Wind, 12 Hydro, 2 Solar , 3 Natural Gas 1 Lignite

K ↗ 3607 Capacity

850 People

Bu doküman Genel olarak işaretlenmiştir.

About Our Company

Senkron Central Control Room

Senkron Central Control Room established in Istanbul.

It has started the process of remote operation of 12 hydroelectric power plants. The wind and solar fleet was followed.

In addition to the remote operation of hydroelectric power plants, It includes control systems belonging to Thermal, wind and Solar power plants and performs process monitoring.

Senkron is one of the best examples of Enerjisa Uretim's goal of digitalization and the pursuit of excellence that has come to life.

What is SENKRON? Project: SENKRON (An Operation Control Center)

Business Challenge

To be able to access all the data of 21 different power plants quickly and regularly, to be able to follow up instantly.

To interpret, visualize and draw conclusions from the data we have obtained

To be able to prevent failures & trips

Time consuming reporting

Digital Transformation projects with AVEVA PI

Hydro Common Alarm Page using PI System Explorer
Automatic reporting by using PI Integrator
Advance Condition Monitoring using PI Asset Framework (AVEVA & TrendMiner)
Condition Monitoring of whole asset instantly by using PI Vision
Power Plant Management (PPM), (Target Load, Ancillary services)

Hydro Common Alarm Page using PI System Explorer

One Screen to Monitor 12 Hydro Plants

Event Name	Start Time 🔻 🔻	End Time	Severity	Acknowledgment	Z 2
SRG Bara Gorilim Sinir Disinda Alarmı 2022-04 21 07:58:17.501	4/21/2022 7:58:17 AM	4/21/2022 7:59:30 AM	Warning	Acknowledged	1 [[63] -
KND Bara Genlim Sinir Disinda Alarmi 2022-04-21 07:57:44.789	4/21/2022 7:57:44 AM	4/21/2022 7:59:36 AM	Warning	Acknowledged	
MNG U1 GENERATOR PIT NEM ORANI>=65 2022-04-21 07:05:48:743	4/21/2022 7:05:48 AM	In Progress	Critical	Acknowledged	SENKRON
MNG U2 GENERATOR PIT NEM ORANI>-65 2022-04-21 07:04:18:710	4/21/2022 7:04:18 AM	In Progress	Critical	Acknowledged	
CMB U1 GENERATOR KILAVUZ YATAK VIBRASYON DEGERI>=2 2022 04 21 06:40:59:552	4/21/2022 6:40:59 AM	4/21/2022 6:43:12 AM	Critical	Acknowledged	
CMB Gol Seviyesi Yuksek 2022-04-21 06:39:02 629	4/21/2022 6:39:02 AM	In Progress	Information	Acknowledged	
HCO GOL SEVIYE Dusuk 2022-04-21 05:54:54.277	4/21/2022 5:54:54 AM	4/21/2022 7:04:50 AM	Information	Acknowledged	
HCO U2 REAKTIF SINIRI DIŞINDA 2022-04-21 05.02.12.441	4/21/2022 5.02.12 AM	4/21/2022 5.03.34 AM	Critical	Acknowledged	
CMB YUKLEME HAVUZU (TUNEL) SEVIYESI DUSUK ALARMI 2022- 04/21 04/19/34/802	4/21/2022 4 19 34 AM	4/21/2022 6:35:26 AM	Information	Acknowledged	
CMB Gol Seviyesi Dusuk 2022-04-21 04:09:14.858	4/21/2022 4:09:14 AM	4/21/2022 6:34:52 AM	Information	Acknowledged	
CMB U1 GENERATOR KILAVUZ YATAK VIBRASYON DEGERI>-2 2022-04-21 03:57:09.585	4/21/2022 3:57:09 AM	4/21/2022 4:00:12 AM	Critical	Acknowledged	
CMB YUKLEME HAVUZU (TUNEL) SEVIYESI DUSUK ALARMI 2022- 04-21 02:41:23.040	4/21/2022 2:41:23 AM	4/21/2022 3:46:17 AM	Information	Acknowledged	
CMB YUKLEME HAVUZU (TUNEL) SEVIYESI DUSUK ALARMI 2022- 04-21 02:39:52:258	4/21/2022 2 39:52 AM	4/21/2022 2:40:23 AM	Information	Acknowledged	
CMB YUKLEME HAVUZU (TUNEL) SEVIYESI DUSUK ALARMI 2022- 04-21 02.32.30.378	4/21/2022 2:32:30 AM	4/21/2022 2:34:04 AM	Information	Acknowledged	
KPR U1 REAKTIF SINIRLARI DIŞINDA 2022-04-21 02:18:53.000	4/21/2022 2:18:53 AM	4/21/2022 2:25:47 AM	Critical	Acknowledged	
KPR U1 REAKTIF SINIRI DISINA CIKTI ALARMI 2022 04 21 02:18:53.000	4/21/2022 2.18.53 AM	4/21/2022 2.25.47 AM	Warning	Acknowledged	
KPR U1 REAKTIF SINIRI DISINA CIKTI ALARMI 2022-04-21 01:49:26.000	4/21/2022 1:49:26 AM	4/21/2022 1:54:29 AM	Warning	Acknowledged	
4/21/2022 12.54.05 AM (5		< 8h			Now 4/2

Added Values

- Analyzed in 2021
- **<u>Prioritisation</u>** of the alarms

To be able to monitor all hydro power plants from a single page.	Minimizing the operation failures.
Communications with Plants operation team and performance team	Taking early actions for; SFC,PFC, Water Level, Temperature, Vibrations

AVEVA

Automatic reporting by using PI Integrator

AVEVA Bu doküman Genel olarak işaretlenmiştir.

Automatic reporting

Natural Gas CCPP Production and Consumption Report

Natural Gas PP Start-up Reports

Diagnostic Reports

Hydro Power Plant Active Power ML Comparison

Hydro Power Plant Active Power ML Comparison

Bu doküman Genel olarak işaretlenmiştir.

PI Asset Framework & TrendMiner

- Trend-Miner Operating Area Analizleri
- · PA FAN
- · SA FAN
- · CID FAN

Using PI Archive to feed the data.

DATABASE 5

Determine the operating conditions and controls abnormal behaviors

Define Root causes and fingerprint the easy indicators

£}

MAINTENANCE

Creating alerts for predictive maintenance

AVEVA Bu doküman Genel olarak işaretlenmiştir.

PI Asset Framework & AVEVA PRISM

MAINTENANCE

AVEVA

Bu doküman Genel olarak işaretlenmiştir.

Findings

Case 1

Identify running Absorber Rec. Pumps

Number of running pumps depend on flue gas condition which leads decrease of internal consumption

U1 Pump 1	2	I	Working Hours : TFN.01/HTD21AM001.Hours 10,746	
U1 Pump 2	12	:	TFN.01/HTD21AM002.Hours : TFN.01/HTD21AM002.Hours 11,253	
U1 Pump 3	22	I	TFN.01/HTD21AM003.Hours i TFN.01/HTD21AM003.Hours 11,321	
U1 Pump 4	2	I	TFN.01/HTD21AM004.Hours i TFN.01/HTD21AM004.Hours 11,328	

Case 2

Axial shaft position change with time series analysis

Determine when the axial shaft position of the turbine reaches the alarm for maintenance

Condition Monitoring of whole asset instantly by using PI Vision

Power Plant Management (PPM)

Load and Unbalance Control of 12 Hydro

1	Fiya	t Bilg	ileri	I			KVB				I			KPR							M	IG			I
SAAT		PTF	SMF	кбйр	D. KGÜP	Net Gen	YAL YAT EDM	PEK	SFK	Bara Set	KGÜP	D. KGŪP	Net Gen	YAL EDM	PFK 9	SFK E	Bara Set	KGÜP	D. KGÜP	Net Gen	YAL YAT	EDM	PFK	SFK	Bara Set
H09	1293	2399	2500	98.5	94	91.99	-6.51	12		157	94	94	92.127	-1.873		36	157	62	62	55.822		-6.178		24	157
H10	1243	1999	0	98.5	94	87.967	-10.53	3 12		159	94	94	86.085	-7.915		36	158	62	62	52.637		-9.363			158
H11		1988	0	4.5	0	4.841	0.341			159	0	0	0.156	0.156			158	0	0	44.062		1.062			158
H12		1724	0	4.5	0	4.38	-0.12			159	0	0	0	0			159	0	0	9.193	7.167	2.026			159
H13	-248	1890	0	4.5	0	4.115				159	0	0	0.088				159	0	0	-0.019					159
H14		1999		65.5	61	5.245				159	0	0					159	0		-0.024					159
H15	0	1999	0	65.5	61					159	0	0					159	0	0						159
H16	0	2199	0	4.5	0					159	0						159	62	62					24	159
H17	0	2500	0	4.5	0					159	0	0					159	62	62					24	159
H18	0	2500	0	4.5	0					159	0	0					159	62	62					24	159
H19	0	2500	0	4.5	0					159	0	0					159	62	62					24	159

		Ünite-1		Final Üretim - Ünite-1								
	SAAT	Reaktif güç (Mvar)	Aktif güç (MW)	TEİAŞ Ü1 Üretim (MWh)	TEİAŞ Ü1 Tüketim (MWh)	Net Üretim (aktif güç) (MWh)	Final Üretim (MWh)					
1	• 00:00-01:00	0	0	0		0						
	• 01:00-02:00	0										
	• 02:00-03:00	0										
	• 03:00-04:00	0										
	• 04:00-05:00	0										
	• 05:00-06:00	0										
	• 06:00-07:00	0										
	• 07:00-08:00	-31,399	19,890	0,989		0,838	0,989					
	• 08:00-09:00	0,839	43,477			44,128						
	• 09:00-10:00	0				0,154						
	• 10:00-11:00	0										
	• 11:00-12:00	0										
	• 12:00-13:00	0										

Using the data we received from PI, we created our own product, Power Plant Management (PPM)

Automated Unit Start-Stops Reporting Warning System for Ancillary Services Automatic calculation of imbalance load

Automatic Reporting Using PowerBI

Mandatory reporting to local

SENKRON Digital Transformation

Chal	lenge
------	-------

- To monitor and operate 12 hydroelectric power plants with different Scada's under one roof.
- Track and monitor more than 60,000 signals instantly.
- Web visibility of fleet data for different users.
- Advanced data analysis.
- Data Management.

Solution

- Hydro common alarm management by using PI System Explorer Event Frame and Notifications.
- PI Vision templates for Process & Condition Monitoring for all fleet
- Using PI Integrator and PI AF system for data sourcing of external products
- Reporting with BI tools

Benefits

- Fewer operational errors
- Quick response time for trips and alarms from different locations
- Contribution to preventive maintenance (Data driven maintenance planning)
- Controlled and time saving internal and external reporting.

Emin Sahin

Speaker title

- Enerjisa Uretim
- emin.sahin@enerjisauretim.com

Kuzey Bener

Speaker title

- Enerjisa Uretim
- Kuzey.bener@enerjisauretim.com

