
NOVEMBER 15TH, 2022

Modeling Grey, Blue and Green Hydrogen Production using AVEVA PRO/II Simulation

Eric Wagner, Technip Energies

Modeling grey, blue and green hydrogen production

Technip Energies At A Glance

Listed on Euronext Paris Stock Exchange	Headquartered in Paris Registered in The Netherlands	60+ years of operations
€6B Full year 2020 adjusted revenue	A leading Project, Engineering & Technology company for the Energy Transition	€16.5B Backlog at end September 2021
~15,000 Employees in 34 countries	25+ Leading proprietary technologies	450 projects Under execution

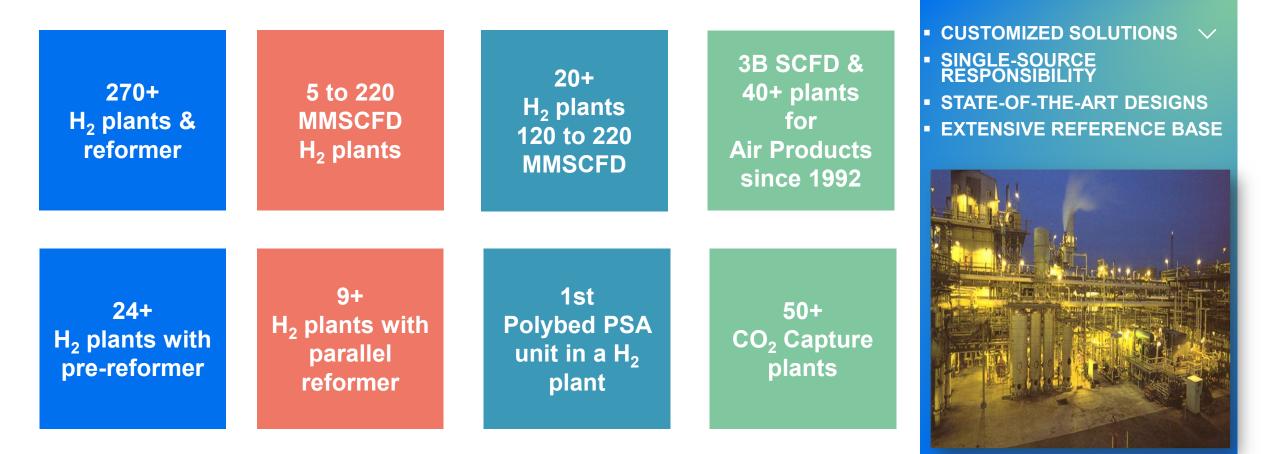
Unlocking The Energy Chains Of Tomorrow

Hydrogen

Sustainable chemistry

A world leader with >270 plants delivered (>35% of installed base)

Recognized partner of choice (Air Products, McPhy)


- Key proprietary technologies in biochemicals and biofuels
- Introducing circularity to conventional ethylene production
- Notable alliances such as with Neste, PLAnet

- >50 references for CO₂ removal solutions
- Strategic alliance with Shell CANSOLV[®] on CO₂ capture

World Leader In Hydrogen

Ready For The Hydrogen Wave

Colors Of Hydrogen

Grey	Blue	Green	Turquoise	Pink
H_2 produced from fossil fuels in which CO_2 is an emission	H_2 produced from fossil fuels but CO_2 is captured	H ₂ produced from renewable feed stocks and often called "clean hydrogen"	H ₂ produced from natural gas through pyrolysis generating solid carbon as a byproduct	H ₂ produced from electrolysis through nuclear energy
	CO2			

Reforming Basics – Reactions In PRO/II

Reforming

 $CH_4 + H_2O \rightarrow 3H_2 + CO$ $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$ $CO + H_2O \rightarrow H_2 + CO_2$ $C_xH_y + 2xH_2O \rightarrow \frac{4x+y}{2}H_2 + xCO_2$

Overall endothermic reaction which takes place over nickel catalyst 4 moles of $H_2 = 1$ mole of CO_2 100 kg of $H_2 = 546$ kg CO_2

Combustion

 $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$ $CO + \frac{1}{2}O_2 \rightarrow CO_2$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

Supplies the required heat of reaction using burners. Burners work on induced draft or balanced draft. Typical SMR radiant section efficiencies around 50% to 55%

Water Gas Shift (WGS)

$CO + H_2O = H_2 + CO_2$

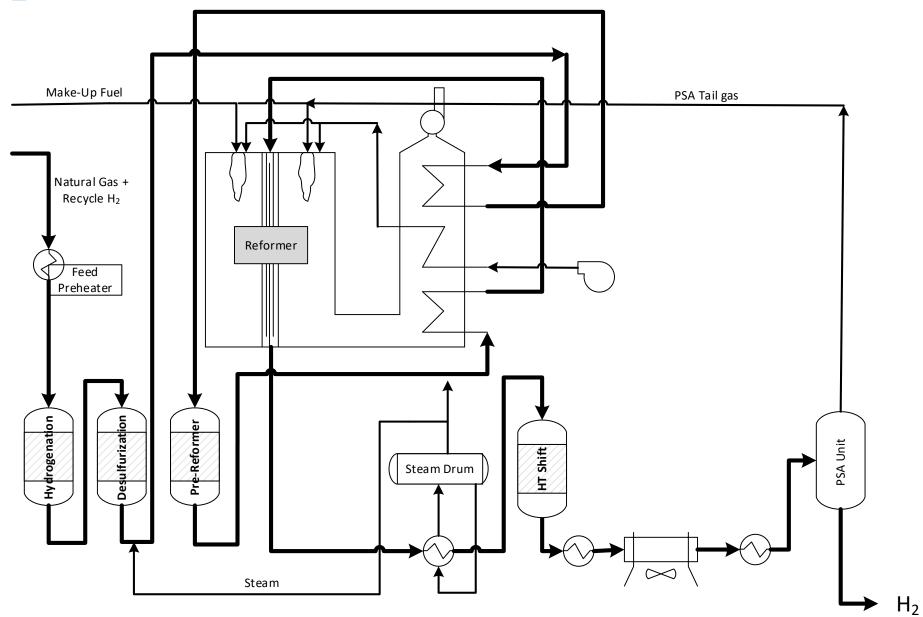
WGS reaction is exothermic, takes place in vessels filled with catalyst

1 mole of $H_2 = 1$ mole of CO_2 100 kg of $H_2 = 2184$ kg CO_2

PRO/II Reactors

Conversion Reactor

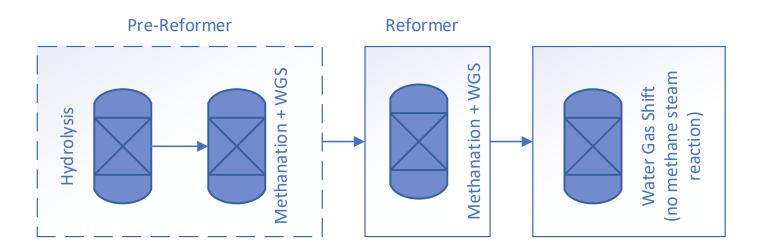
- Hydrolysis higher hydrocarbons to CO (prior to Equilibrium Reactor)
- Combustion
- Electrolyzer
- Methane Pyrolysis



Equilibrium Reactor

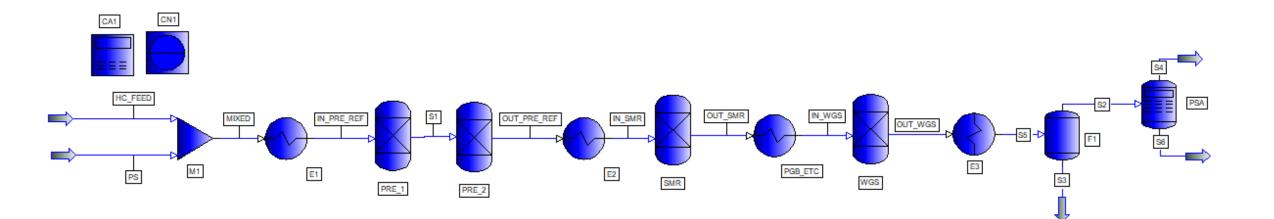
- Methanation Reactor
 - Methane-Steam Reaction Equilibrium Predefined in PRO/II (nice!)
 - $CH_4 + H_2O = CO + 3H_2$
 - K_{eq} = f(temperature)
 - Water-Gas Shift Reaction Equilibrium Predefined in PRO/II (nice!)
 - $CO + H_2O = CO_2 + H_2$
 - K_{eq} = f(temperature)
- Water Gas Shift Reactor
 - WGS equilibrium controlled
 - No methane-steam reaction

Grey H₂ Plant Basic Flowsheet: SMR

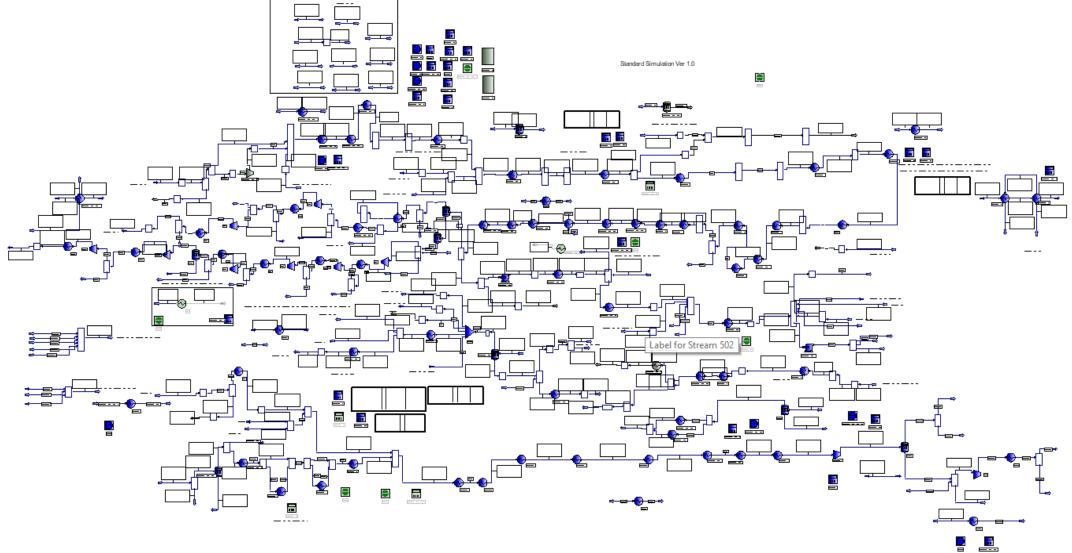


SMR Reactor Sequence

1. Pre-Reformer will convert higher hydrocarbons to CO, CO and CH₄


- Model a pre-reformer in two separate adiabatic reactors in series (one actual reactor)

 - Equilibrium Reactor: Methane-Steam reaction + Water Gas Shift reaction
- 2. SMR is modeled as a single equilibrium reactor "Methanation"
- 3. Water Gas Shift modeled as a single equilibrium reactor "Shift"



PRO/II - Grey SMR H₂ Plant Overview - Simplified

Blue H₂ SMR – Complex Simulation

Hydrolysis in PRO/II: Conversion Reactor

Unit: R1	Description:		
Reactor Type: Conversion			Reactor
Reaction Set Name:	HYDROLYSIS ~	Unit Reaction Definitions	Data
Thermal Specification			Î\ /Î
 Temperature Rise: Fixed Temperature: 		Extent of Reaction	Pressure
Fixed Duty:	0 x 10 ^e Kcal/hr		/
1		4	\square
Thermodynamic System:	Default (PR01)	Product Phases	Print Options

Feedback Controller

UOM Range Help	Overview Status Notes
Unit: CN1 Specification Stream PS Flowrate of component H20 within <u>the default tolerance</u>	Description: <u>I on a Wet basis in kg-mol/hr / CalculatorCA1 Result R(1)</u> = <u>3.0000</u>
⊤Variable Stream PS Flowrate in kg-mol/hr	Limits and Step Sizes

- Used for step 1 of the Pre-Reformer

UOM Define Ra	nge Help				
	• A + B*T + C*T ²				
Multiple Reaction Co	nversion Basis:	Default	~	Reorder Read	ctions
Reaction Name	Base Component	A	В	C	Temperature Unit
ETHANE	C2H6	\sim	1	0	0 🖸
PROPANE	C3H8	~	1	0	0 C

Conversion Reactor - Extent of Reaction

Methanation in PRO/II : Equilibrium Reactor

Unit: R3	Description:	
Reactor Type: Reaction Set Nam	Equilibrium ne: Methanation ~	Unit Reaction Definitions
Thermal Specific Temperature Fixed Temperature Fixed Duty:	Rise: 0 C	Extent of Reaction
Relative Duty Tok Thermodynamic S		Product Phases Print Options
Reaction Set: Operation Phas Reactor Opera Vapor	Methanation e and Activity Basis tion Phase: Reaction Activity Basis: Partial Pressure	
Name	Definition	
Methanation	C0 + 3H2 = CH4 + H20	Equilibrium Data
Shift	C0 + H20 = C02 + H2	Equilibrium Data

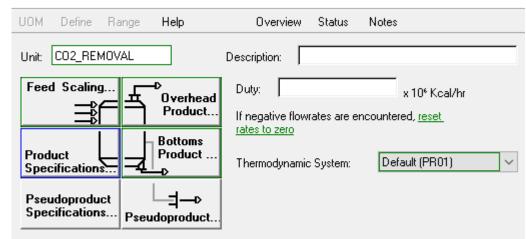
- Used for Pre-Reformer (step 2), Steam-Methane Reformer (SMR), Autothermal Reformer (ATR)
- Predefined methanation reaction
- Methanation and water gas shift reactions take place simultaneously

1ethanation	Extent of Reaction	Shift	Extent of Reaction			
Extent of Reaction		Extent of Reaction				
Temperature Appro	ach:	Temperature Appro	ach:			
	-10 C	0 C				
O Fractional Approac	h:	O Fractional Approach:				
Approach = A +	+ B*T + C*T ²	Approach = A + B*T + C*T ²				
A:	1	A:	1			
B:	0	B:	0			
C:	0	C:	0			
Temperature Unit:	E	Temperature Unit:	E			

Water Gas Shift in PRO/II : Equilibrium Reactor

Equilibrium Reactor					
UOM Define Range	Help Overview	Status	Notes		
Unit: HTS	De	escription:	HTS		
Reactor Type: Equilibriu	m				Reactor
Reaction Set Name:	Shift	~		Unit Reaction Definitions	Data
Thermal Specification	0 F				Î X ZÎ
 Temperature Rise: Fixed Temperature: Fixed Duty: 	-457.87 F	10 ⁶ BTU/hr		Extent of Reaction	Pressure
Relative Duty Tolerance:	0.001			4	Ű
Thermodynamic System:	Default (1)	\sim		Product Phases	Print Options
	OK	Can	icel		
Exit the window after saving al	l data				

- Predefined shift reaction
- Only water gas shift reaction takes place


	Shift e and Activity Basis on Phase:	Reaction Activity Basis:	
Vapor	\sim	Partial Pressure \vee	
Name	Definition		
Shift	CO + H2O = CO	2 + H2	Equilibrium Data

Exten	t of Reaction	
⊙ ⊺	emperature Approach:	
	35 F	

PSA and CO₂ Removal in PRO/II : Stream Calculator

Stream Calculator

The stream calculator will combine the feeds. The composite feed is split into overhead and bottoms products.

Product Specifications

Cut Insert	1	<u>SPEC1</u> - <u>Recovery</u> of <u>H2</u> in the <u>bottoms product</u> will be <u>0.99</u> in <u>Mole</u> Fraction
Reset	2	<u>SPEC2</u> - <u>Composition</u> of <u>CO</u> in the <u>overhead product</u> will be <u>0.0000</u> in <u>Mole</u> Fraction
	3	$\frac{\text{SPEC3} \cdot \text{Composition}}{\text{Mole Fraction}} \text{ of } \frac{\text{CO2}}{\text{CO2}} \text{ in the } \frac{\text{overhead product}}{\text{will be } 1} \text{ in } \frac{\text{Mole Fraction}}{\text{CO2}}$
	4	<u>SPEC4</u> - <u>Recovery</u> of <u>O2</u> in the <u>bottoms product</u> will be <u>1.0000</u> in <u>Mole</u> Fraction
	5	<u>SPEC5</u> - <u>Recovery</u> of <u>N2</u> in the <u>bottoms product</u> will be <u>0.99800</u> in <u>Mole</u> Fraction
	6	<u>SPEC6</u> - <u>Recovery</u> of <u>H20</u> in the <u>bottoms product</u> will be <u>1.0000</u> in <u>Mole</u> Fraction

Stream Calculator

UOM	Define	Range	Help	Overview	Status	Notes		
Unit	PSA			Description:				
Fee	d Scaling	- - -	-D Overhead Product	Duty: If negative flow rates to zero	ates are e		x 10º Kcal/hr ed, <u>reset</u>	
Prod Spec	luct cifications	╤╤	Bottoms Product	Thermodynamic	: System:	Defa	ault (PR01)	~
	udoproduc cifications		└─ ┤ ─⊳ Idoproduct					

The stream calculator will combine the feeds. The composite feed is split into overhead and bottoms products.

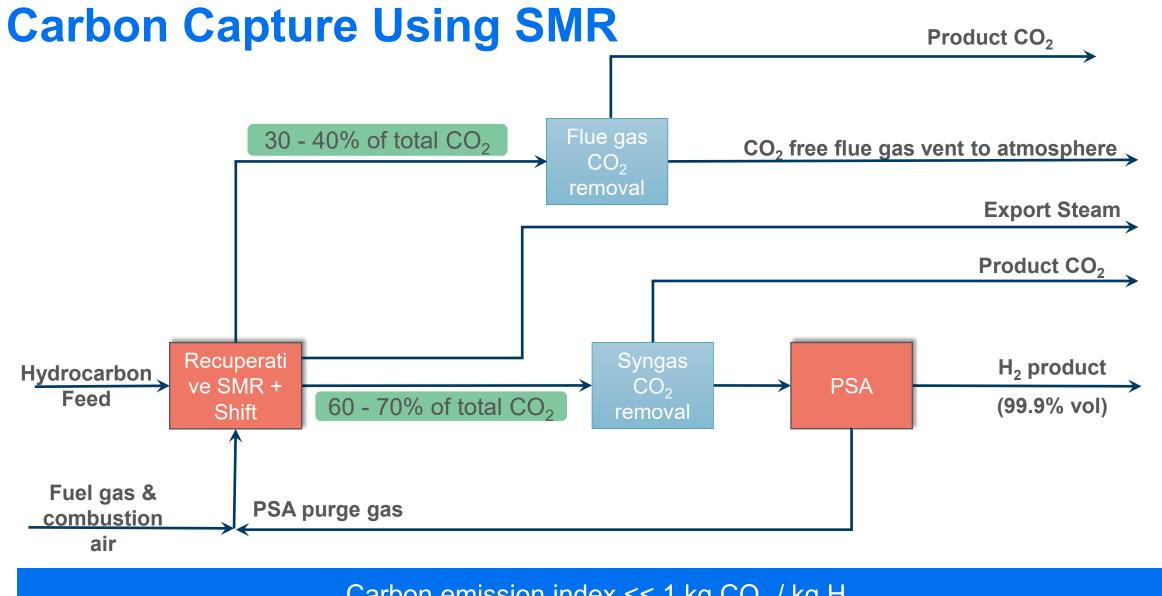
[Product	t Specifications						
Cut Insert		$\frac{SPEC1}{NOT} - \frac{Recovery}{NOT} \text{ of } \frac{H2}{H2} \text{ in the } \frac{OV}{OV} \frac{OV}{OV} \text{ or } \frac{OV}{OV} \text{ or } \frac{OV}{OV} \text{ of } \frac{H2}{V} \text{ or } \frac{OV}{OV} $					
Reset	2	SPEC2 - <u>Recovery</u> of <u>CH4 through C3H8</u> in the <u>overhead product</u> will be <u>1.0000</u> in <u>Mole</u> Fraction					
	3	SPEC3 - <u>Recovery</u> of <u>CO2</u> in the <u>bottoms product</u> will be <u>0.99000</u> in <u>Mole</u> Fraction					

Route To Blue Hydrogen

Steam Methane Reformer

- Reduction in fired duty using
 - Pre-reformer
 - Air Preheaters
 - Lower S/C
 - Advanced heat recovery cycles
- Using Technip Energies proprietary equipment
 - EARTH[®]
 - Technip Parallel Reformer® (TPR[®])
- Improves energy efficiencies while reducing CO₂ footprint

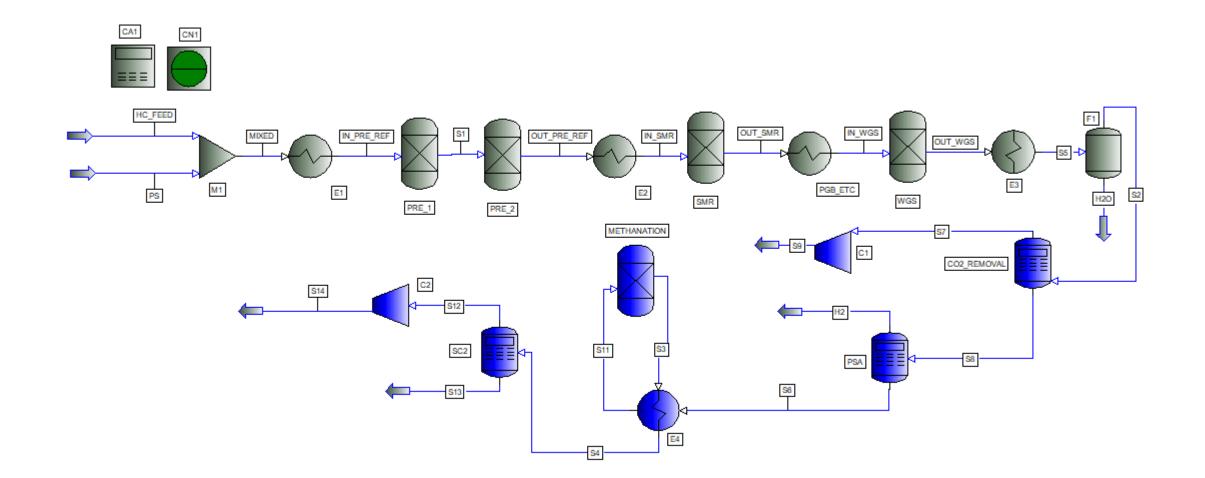
Auto Thermal Reformer


- Traditionally used for ammonia, methanol, GTL, HyCO, DRI plants
- Now relevant to blue hydrogen plants
- Syngas has lower H₂:CO ratios
- Minimal flue gas emissions (Fired heater for feed preheat required)
- Requires an Air Separation Unit (ASU) which can be energy and capital intensive, possible application of green electricity.

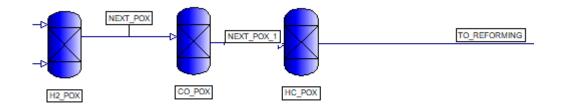
Carbon Capture

- Use of solvents to capture CO₂ from
 - Syngas
 - Flue gas
- Removal of CO₂ from syngas substantially easier than removal from flue gas
- Other CO₂ removal technologies applicable such as membrane, cryogenic capture.

Co-Generation via integration of gas turbine or steam turbine possible for all options.



Carbon emission index << 1 kg CO_2 / kg H₂



Reactor Sequence For Blue SMR H₂ Plant

ATR for Blue H₂ (Step 1): Conversion Reactor

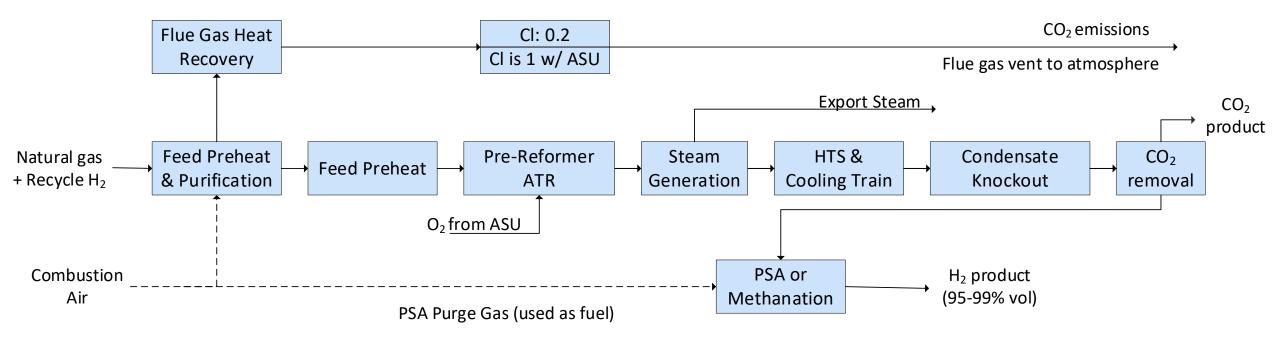
PRO/II - Conversion Reactor

UOM Define Range	Help	Overview	Status	Notes		
Unit: HC_POX		Desc	cription:	HC POX		
Reactor Type: Conversion	I					Reactor
Reaction Set Name:	HC_POX		~		Unit Reaction Definitions	Data
Thermal Specification Temperature Rise:		0 F				$1 \setminus / 1$
 Fixed Temperature: 		F			Extent of Reaction	Pressure
Fixed Duty:		0 x 1	0° BTU/h	r		\parallel / \mid

Name	Definition
СО	CO + 0.50 O2 = CO2
H2	H2 + 0.50 O2 = H2O
CH4	CH4 + 1.50 O2 = CO + 2.00 H2O
ETHANE	C2H6 + 2.50 O2 = 2.00 CO + 3.00 H2O
PROPANE	C3H8 + 3.50 O2 = 3.00 CO + 4.00 H2O
BUTANE	C4H10 + 4.50 O2 = 4.00 CO + 5.00 H2O

Partial oxidation of H₂, CO and hydrocarbons

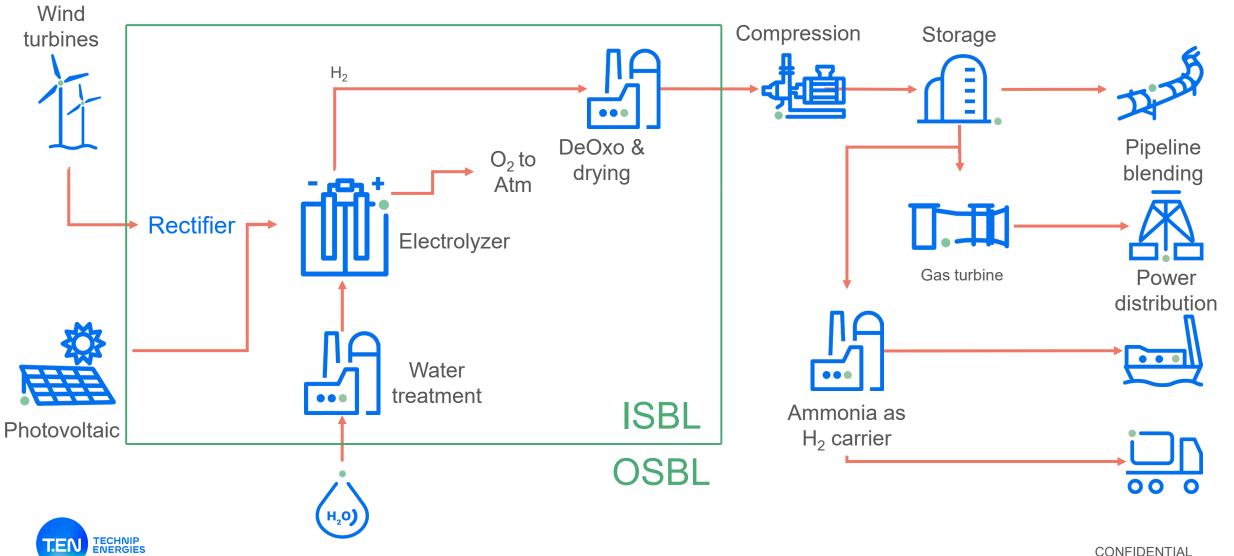
ATR for Blue H₂ (Step 2): Equilibrium Reactor


PRO/II - Equilibrium Reactor

UOM Define Range Help Overview Status Notes		Methanation Extent of Reaction	Shift Extent of Reaction
Unit: EQ_REF_1 Description: Equib Re	eformer	Extent of Reaction	Extent of Reaction
Reactor Type: Equilibrium Reaction Set Name: Methanation ~	Unit Reactor Beaction	Temperature Approach: -10 C	Temperature Approach: O C
Thermal Specification Temperature Rise: F Fixed Temperature: -457.87 Fixed Duty: Fixed Duty:	Definitions Extent of Reaction	Fractional Approach: Approach = A + B*T + C*T ² A:	Fractional Approach: Approach = A + B*T + C*T ² A: 1
Relative Duty Tolerance: 0.001 Thermodynamic System: Default (1)	Product Phases	B: 0 C: 0 Temperature Unit: <u>F</u>	B: 0 C: 0 Temperature Unit: <u>F</u>
OK Cancel			

Reactor Opera	tion Phase: Reaction A	ctivity Basis:
Vapor	✓ Partial Pre	sure 🗸
Name	Definition	
Methanation	CO + 3H2 = CH4 + H2O	Equilibrium Data
Shift	C0 + H20 = C02 + H2	Equilibrium

ATR for blue H₂



Hydrogen can be used as a fuel in fired heater

Green Hydrogen

ISBL / OSBL scope

Electrolyzer in PRO/II: Conversion Reactor

Conversion Reactor

UOM Define Range	Help Overview	Status Notes		
Unit: ELECTROLYZER	Desc	cription:		
Reactor Type: Conversion Reaction Set Name:	ELECTROLYZER	~	Unit Reaction Definitions	Reactor Data
Thermal Specification Temperature Rise: Fixed Temperature: Fixed Duty:	0 F 176 F 0 x1	0° kJ/hr	Extent of Reaction	Pressure

Name	Definition			
E	2.00 H2O = O2 + 2.00 H2			

Reaction Name	Base Component		A	В	С	Temperature Unit
E	WATER	\sim	0.441	0	0	E

New Ways To Make An Old Molecule

Examples of alternate feedstocks for hydrogen production

- Electrolysis of Water
- Steam Reforming of Non-Fossil Feeds
 - Refined products
 - Ethanol
 - Synthetic natural gas
 - Partially processed materials
 - Vegetable oils
 - Biogas
 - Bio oil from fast pyrolysis
- Gasification of Non-Fossil Feeds
 - Raw bio-sourced feeds such as biomass
 - Municipal Solid Waste
- Cracking
 - Ammonia, Natural Gas

Sustainable Chemistry

Questions?

Please wait for the microphone. State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

Thank you!

This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.

in linkedin.com/company/aveva

@avevagroup

ABOUT AVEVA

AVEVA is a global leader in industrial software, sparking ingenuity to drive responsible use of the world's resources. The company's secure industrial cloud platform and applications enable businesses to harness the power of their information and improve collaboration with customers, suppliers and partners.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world's most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. With operations around the globe, we are headquartered in Cambridge, UK and listed on the London Stock Exchange's FTSE 100.

Learn more at <u>www.aveva.com</u>

