## Spiral SDK: Predicting Asphalt Feed



H. Ingham Aveva World Nov 14-17, 2022 NOV 14-17, 2022

# Spiral SDK: Predicting Asphalt Feed

Using new SDK functionality for distillation analysis

H. Ingham, Chevron

2022 AVEVA Group plc and its subsidiaries. All rights reserved.



### Using the SDK at Chevron

- Chevron Assay Group started with Spiral in 1999
- Engineering and Planning functions in addition to Assay Properties
- How can flow rates and properties be estimated for complex routings?
- Aveva Spiral spreadsheet tools offer a solution for faster prototyping and emergency predictions.
- Specific example on getting asphalt properties on a "real fractionated" basis

### Spiral SDK (Software Development Kit)



- Spiral's SDK allows for assay creation and manipulation from Excel.
- Spiral's Fenske type distillation can be used for refining distillation analysis. Column calibration, multiple injections and unlimited blending and splitting are available from simple spread sheet structures.
- The full power of Spiral Assay is matched with Excel allowing for optimization, target setting and monitoring of complex crude distillation scenarios.
- This example demonstrates a multi-column scenario to optimize and monitor asphalt feed.
- Planning and Engineering functions streamline prototyping, emergency calcs, monitoring and performance of oil flows from the crude unit.



### **Topology of the system in Spiral Assay Flowsheet**

The initial model was put together in Spiral Flowsheet program involves 3 Atmos units feeding 2 VDUs. 2CU ATB can feed either VDU.





### **Topology of the system in Spiral Assay Flowsheet**

Rebuilt using the Flowsheet tool from SpiralIntranet.



### **Spiral Flowsheet in SDK Module**



Via the SDK, the setup in Spiral Flowsheet can be converted into SDK modules in Excel format.



### **Stream Qualities Representation**



Next, the modules are linked together using a Spiral SDK assay call for each streams, that ranges the various inputs. Note the colored boundaries.

| Αι         | AutoSave $\bigcirc$ Off $\square \square $ |               |         |          |              |             |               |             |              |                         |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|----------|--------------|-------------|---------------|-------------|--------------|-------------------------|--|--|--|--|--|
| S          | JM                                                                                                                                                                         | •             | : × 、   | f_x =    | AssayGetFlov | vsheetCutMa | trixMultiFeed | Q16:V54,A5: | A14,B4:AB4,A | 16:F51,H16:J38,L16:O30) |  |  |  |  |  |
|            |                                                                                                                                                                            |               |         |          | ,            |             | 1             | Feeds       | Names        | Mixers                  |  |  |  |  |  |
| Internal 🖍 |                                                                                                                                                                            |               |         |          |              |             |               |             |              |                         |  |  |  |  |  |
|            | Α                                                                                                                                                                          | В             | С       | D        | E            | F           | G             | Н           | I            | J                       |  |  |  |  |  |
| 1          | 1 Flowsheet - Advanced MultiFee = AssayGetFlowsheetCutMatrixMultiFeed(Flow Basis, Feeds Range, Property Code Range, Stream Range, Towers Range, Mixers Range, Splitters Ra |               |         |          |              |             |               |             |              |                         |  |  |  |  |  |
| 2          | Back to Introduction                                                                                                                                                       |               |         |          |              |             |               |             |              |                         |  |  |  |  |  |
| 3          |                                                                                                                                                                            |               |         |          |              |             |               |             |              |                         |  |  |  |  |  |
| 4          |                                                                                                                                                                            | 1CU_FEED      | AR1     | 2CU_FEED | AR2          | 3CU_FEED    | AR-3          | AR12        | AR23         | AR123                   |  |  |  |  |  |
| 5          | DEN,15C,g/cc                                                                                                                                                               | rixMultiFeed( | 0.9774  | 0.9527   | 1.0068       | 0.9491      | 1.0017        | 0.9916      | 1.0051       | 0.993                   |  |  |  |  |  |
| 6          | MCRT,%                                                                                                                                                                     | 6.86          | 13.45   | 9.32     | 14           | 9.36        | 14.25         | 13.96       | 14.41        | 14.0                    |  |  |  |  |  |
| 7          | AS7,%                                                                                                                                                                      | 4.67          | 9.15    | 4.53     | 7.00         | 4.91        | 7.48          | 8.12        | 7.20         | 8.0                     |  |  |  |  |  |
| 8          | PEN,25C,mm/10                                                                                                                                                              | 1121094.12    | 8379.80 | 67194.89 | 1457.49      | 81488.76    | 2118.10       | 3546.74     | 1648.32      | 3208.6                  |  |  |  |  |  |
| 9          | VIS,200C,cSt                                                                                                                                                               | 0.97          | 8.13    | 2.68     | 13.82        | 2.56        | 12.30         | 10.58       | 13.30        | 10.9                    |  |  |  |  |  |
| 10         | VIS,300C,cSt                                                                                                                                                               | 0.50          | 2.58    | 1.09     | 3.08         | 1.06        | 2.96          | 2.87        | 3.04         | 2.8                     |  |  |  |  |  |
| 11         | FLOWV,kbbl/d                                                                                                                                                               | 95.00         | 43.72   | 135.00   | 82.08        | 65.00       | 40.48         | 84.77       | 61.28        | 105.0                   |  |  |  |  |  |
| 12         | FLOWW,t/d                                                                                                                                                                  | 13321.15      | 6794.62 | 20448.64 | 13138.23     | 9808.67     | 6446.33       | 13363.74    | 9792.28      | 16586.9                 |  |  |  |  |  |
| 13         | SUL,%                                                                                                                                                                      | 1.78          | 2.85    | 1.48     | 1.89         | 1.48        | 1.87          | 2.38        | 1.88         | 2.2                     |  |  |  |  |  |
| 14         | SOF.C                                                                                                                                                                      | 17.11         | 37.13   | 24.16    | 40.26        | 26.93       | 41.36         | 38.67       | 40.62        | 39.1                    |  |  |  |  |  |

### **Complex Model Representation in SDK Module**





Chevron

### Using SDK Flowsheet Fitting for Column Calibration from Plant Data



Any of the column models can be tuned with plant data on a separate sheet if you do not already have ECP and FI from day-to-day unit monitoring

| su | M                     | •        | × v    | f <sub>x</sub> | =Flowshee   | etFit(A3;F1 | 7,K5,K3:P8,R3:T8,V3: | Y8,A19:F33) |        |              |         |         |                |              |              |          |   |
|----|-----------------------|----------|--------|----------------|-------------|-------------|----------------------|-------------|--------|--------------|---------|---------|----------------|--------------|--------------|----------|---|
| 0  | Internal 🧪            |          |        |                |             |             |                      |             |        |              |         |         |                |              |              |          |   |
|    | А                     | В        | С      | D              | E           | F           | G N                  |             | J      | K            |         | L       | Μ              | N            | 0            | Р        | C |
| 1  | Flowsheet Fitting     |          | rowshe | etFit (Distil  | lation Data | a Range, Fl | owsheet Feed / ipe,  | Towers kang | e, Mix | (ers Range , | Splitte | rs Rang | e , Confidence | es Range )   | Show         | Help     |   |
| 2  | Back to Introduction  |          |        |                |             |             |                      |             |        |              |         |         |                |              |              |          | _ |
| 3  | Distillation Data 🦳   | Slop Oil | LVGO2  | HVGO2          | SW2         | VR2         |                      |             |        | Towers       | Pipes   | 3       | ECP            | StrippingFl  | RectifyingFl | Pressure |   |
| 4  | YLD,V,%               | 1.25     | 14.08  | 37.54          | 11.33       | 35.79       |                      |             |        | CDU          | Slop    | Oil     | С              |              |              | atm      |   |
| 5  | SPG,15.55555556C,none | 0.79     | 0.88   | 0.92           | 0.95        | 1.04        |                      |             |        | VDUFeed      | LVGC    | )2      | 203.02         | 2.23         | 1.19         | 0.01     | 1 |
| 6  | CUMP,W,.5%,C          | 57.30    | 197.00 | 312.80         | 361.40      | 457.20      |                      |             |        |              | HVG     | 02      | 365.03         | 1.20         | 1.25         | 0.01     | L |
| 7  | CUMP,W,5.0%,C         | 115.40   | 244.00 | 351.00         | 428.80      | 532.40      |                      |             |        |              | SW2     |         | 515.00         | 1.18         | 1.31         | 0.01     | 1 |
| 8  | CUMP,W,10.0%,C        | 143.70   | 266.00 | 368.40         | 449.00      | 52.60       |                      |             |        |              | VR2     |         | 553.71         | 1.37         | 1.98         | 0.01     | L |
| 9  | CUMP,W,30.0%,C        | 174.80   | 312.80 | 409.00         | 492.60      | 602.20      |                      |             |        |              |         |         |                |              |              |          |   |
| 10 | CUMP,W,50.0%,C        | 189.40   | 342.20 | 436.60         | 519.00      | 652.80      |                      |             |        |              |         |         |                |              |              |          |   |
| 11 | CUMP,W,70.0%,C        | 203.90   | 365.60 | 463.80         | 57.1.60     | 715.40      |                      |             |        |              |         |         |                |              |              |          |   |
| 12 | CUMP,W,90.0%,C        | 230.00   | 397.20 | 501.00         |             |             |                      |             |        |              |         |         |                |              |              |          |   |
| 13 | CUMP,W,95.0%,C        | 243.20   | 412.20 | 517.20         | · · · · ·   |             |                      |             |        |              |         |         |                |              |              |          |   |
| 14 | CUMP,W,99.5%,C        | 264.20   | 447.20 | 552.60         |             |             |                      |             |        | Fitted       |         |         |                |              |              |          |   |
| 15 |                       |          |        |                |             |             |                      |             |        | Pipes        | ECP     |         | StrippingFl    | RectifyingFl | Pressure     | X Error  |   |
| 16 |                       |          |        | /              |             | ÷           |                      |             |        | F33)         |         | C       | ;              |              | atm          | 3.035    | 5 |
| 17 |                       |          |        |                |             |             |                      |             | _ L    | LVGO2        | _       | 215.11  | 3.52           | 1.97         | 0.01         | 3.633    | 3 |
| 18 |                       |          |        |                |             |             |                      |             |        | HVGO2        |         | 363.59  | 1.26           | 1.20         | 0.01         | 2.513    | 3 |
| 19 | Confidence Data       | Slop Oil | LVGO2  | HVGO2          | SW2         | VR2         |                      |             |        | SW2          |         | 513.99  | 1.14           | 1.65         | 0.01         | 2.390    | ) |
| 20 | YLD,V,%               | High     | High   | High           | High        | High        |                      |             |        | VR2          |         | 544.62  | 1.93           | 1.29         | 0.01         | 5.741    | L |
| 21 | SPG,15.55555556C,none | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 22 | CUMP,W,.5%,C          | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 23 | CUMP,W,5.0%,C         | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 24 | CUMP,W,10.0%,C        | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 25 | CUMP,W,50.0%,C        | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 27 | CUMP.W.70.0%.C        | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 28 | CUMP.W.90.0%.C        | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 29 | CUMP,W,95.0%,C        | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 30 | CUMP,W,99.5%,C        | Normal   | Normal | Normal         | Normal      | Normal      |                      |             |        |              |         |         |                |              |              |          |   |
| 31 |                       |          |        |                |             |             |                      |             |        |              |         |         |                |              |              |          |   |

Plant data section can be called from PI-AF. Fitted parameters are linked back to the model.

### **Calculating VDU cp**

The CutPoint off the VDU can be a problem since the feed is a combination of 3 atmos resids.

In this case the mass flowrate of any VDU product can be divided by the VDU feed rate to get the % yield.

Intersecting this % yield with the TBP of the VDU is the VR cutpoint.

In this example, the VR1 rate is divided by the VDU1 feed rate, subtracted from 100, then intersected with the TBP of the VDU1FD stream, at 558C cutpoint.

| Н                |                  | J                              | K             | L           | М           | N           | 0           |
|------------------|------------------|--------------------------------|---------------|-------------|-------------|-------------|-------------|
| ange, Stream Rai | nge, Towers Rang | ge, Mixers Range, Splitters Ra | nge)          |             | Show He     | n           |             |
|                  |                  |                                |               |             | 5104110     | P           |             |
|                  |                  |                                |               |             |             |             |             |
| AR12             | AR23             | AR123                          | HSSR1         | VDU1FD      | VR1         | AR23        | HSSR2       |
| 0.9920           | 1.0057           | 0.9939                         | 0.9641        | 0.9937      | 1.0449      | 1.0057      | 0.9641      |
| 14.05            | 14.54            | 14.09                          | 10.32         | 14.07       | 26.35       | 14.54       | 10.32       |
| 8.17             | 7.26             | 8.04                           | 4.16          | 8.02        | 15.75       | 7.26        | 4.16        |
| 3381.17          | 1533.58          | 3085.97                        | 66067.87      | 3129.99     | 5.94        | 1533.58     | 66067.87    |
| 10.78            | 13.66            | 11.06                          | 3.18          | 10.99       | 137.43      | 13.66       | 3.18        |
| 2.90             | 3.09             | 2.91                           | 1.24          | 2.90        | 11.54       | 3.09        | 1.24        |
| 84.19            | 60.71            | 104.43                         | 0.50          | 104.93      | 49.92       | 60.71       | 0.50        |
| 13278.17         | 9706.71          | 16501.34                       | 76.64         | 16577.98    | 8292.25     | 9706.71     | 76.64       |
|                  |                  |                                | .4            |             |             |             |             |
|                  |                  |                                |               |             |             |             |             |
|                  |                  |                                |               |             |             |             |             |
|                  |                  |                                |               |             |             |             |             |
| Vixers           | Inputs           | Output                         |               | Splitters   | Input       | Outputs     | Ratio       |
| Alword 2         | 482.4            | 4.84.2                         | -             |             | 483         | 483.3       | 0.5         |
| wixer12          | ARZ_1            | ARIZ                           |               | ZICU_ARSPI  | AKZ         | ARZ_3       | 0.5         |
|                  | AK1              | -                              | -             | -           |             | AKZ_1       | 0.5         |
|                  |                  | 1722                           | -             |             | 10.0        | 102.4       |             |
| vlixer23         | AK2_3            | AK23                           | -             | 31CU_ARSPT  | AK-3        | AK3_1       | 0.5         |
|                  | AR3_2            |                                |               |             |             | AR3_2       | 0.5         |
|                  | $\frown$         |                                |               |             |             |             |             |
| Vixer (5)        | AR3_1            | AR123                          | -             | HSSRSpt     | HSSRFD      | HSSR1       | 0.5         |
|                  | AR12             |                                | -             |             |             | HSSR2       | 0.5         |
|                  |                  |                                |               | -           |             |             |             |
| Vixer (4)        | AR123            | VDU1FD                         |               | 2CU_VRSPT   | VR2         | VR2_ASP     | 0.8         |
|                  | HSSR1            |                                |               |             |             | VR2_RDS     | 0.2         |
|                  |                  |                                |               |             |             |             |             |
| Vixer (6)        | AR23             | VDU2FD                         |               | 1_U_VRSPT   | VR1         | VR1_ASP     | 0.8         |
|                  | HSSR2            |                                |               |             |             | VR1_RDS     | 0.2         |
|                  |                  |                                |               |             |             |             |             |
| MixASP           | VR2_ASP          | ASPHALT_FD                     |               |             |             |             |             |
|                  | VR1_ASP          |                                |               |             |             |             |             |
|                  |                  |                                |               |             |             |             |             |
| MixRDS           | VR2_RDS          | RDS_FD                         |               |             |             |             |             |
|                  | VR1_RDS          |                                | &=100-M11/L11 | *100        |             |             |             |
|                  |                  |                                | . 🎽           |             |             |             |             |
|                  |                  |                                | VR1 CtPt 📕    | VR2 CtPt    | AR1         | AR2         | AR3         |
|                  |                  | Resid Yld                      | =100-M11/L11* | 40.04789575 | 53.97419461 | 40.04789575 | 37.72531146 |
|                  |                  |                                |               |             |             |             |             |
|                  |                  | CutPoints                      | VDU1FD        | VDU2FD      | 1CU_FEED    | 2CU_FEED    | 3CU_FEED    |
|                  | VR1 CtPt         | CUMP_SIMDIS,V,52.429%,C        | 557.7964496   | 568.9135254 | 363.9057792 | 465.8075424 | 461.5502801 |
|                  | VB2 CtPt         | CUMP, SIMDIS V 40 048% C       | 511,3547091   | 523,4212254 | 290 1551508 | 404 5169959 | 399 0185418 |
|                  |                  | DEN.15C.g/cc                   | 0 993718682   | 1 005367128 | 0 881974042 | 0 952726635 | 0 949149368 |
|                  |                  | MCRT %                         | 14 07346888   | 14 50873495 | 6 858778381 | 9 315151465 | 9 36256446  |
|                  |                  | A\$7 %                         | 8 020416771   | 7 234785217 | 4 667812852 | 4 534391484 | 4 913783034 |
|                  |                  | PEN 250 mm/10                  | 3120 00/656   | 1579 461476 | 112100/ 118 | 6710/ 80270 | 81/88 76116 |
|                  |                  | VIS 200C cSt                   | 10 9904/995   | 13 48555822 | 0.967915117 | 2 681760274 | 2 562360942 |
|                  |                  | VIS 300C cSt                   | 2 90127/224   | 3.060006064 | 0.498332042 | 1 088038764 | 1.058/78077 |
|                  |                  |                                | 104 0214502   | 61 20604415 | 0.450552045 | 1.000930/04 | 1.0304/03// |
|                  |                  |                                | 16577.07000   | 01.20094415 | 19901 15007 | 135         | 0000 674000 |
|                  | 401              | FLOWW,T/d                      | 16577.97909   | 9783.354683 | 13321.15337 | 20448.64312 | 9808.674882 |
|                  | AKI              | CUMP_SIMDIS,V,53.9741946       | 564.1831435   | 575.1489994 | 3/3.2801971 | 4/3.6353351 | 469.5100914 |
|                  | 482              | CLIMP SIMDIS V 40 047805       | 511 3543449   | 523 420869  | 290 1545265 | 404 5164631 | 399 0170051 |
|                  | 102              | CUMP_SIMDIS,V,40.047895        | E02 2540474   | 525.420009  | 250.1040200 | 202 5004007 | 395.01/9901 |
|                  |                  |                                |               |             |             |             |             |

### **Asphalt Blend Component**



Assays produced from the HC Bottoms stream can be injected and blended with the straight run vac resid material. Low, Medium and High severity can be chosen in the HC feed box, simulating the reactor frac bottoms.

|        |   |        |            |   |   | - | Assays for range of |
|--------|---|--------|------------|---|---|---|---------------------|
| HCProd | 1 | kbbl/d | HCBTMSMed  | 1 | v |   | reactor severities  |
|        |   |        | HCBTMSLow  | 0 |   |   |                     |
|        |   |        | HCBTMSHigh | 0 |   |   |                     |
|        |   |        |            |   |   |   |                     |
|        |   |        |            |   |   |   |                     |

| HCSplit | HCProd | HCProd1 | 0 |
|---------|--------|---------|---|
|         |        | HCProd2 | 0 |
|         |        | HCProd3 | 1 |
|         |        |         |   |
|         |        |         |   |
|         |        |         |   |
|         |        |         |   |
|         |        |         |   |

| ¢ |  |
|---|--|
|   |  |

| Mixer (4) | AR123   | VDU1FD     |
|-----------|---------|------------|
|           | HCProd1 |            |
|           |         |            |
| Mixer (6) | AR23    | VDU2FD     |
|           | HCProd2 |            |
|           |         |            |
| MixASP    | VR2_ASP | ASPHALT_FD |
|           | VR1_ASP |            |
|           | HCProd3 |            |
|           |         |            |



### Asphalt Predictive Model using Spiral SDK

All the flowsheet elements are brought together in a single Excel workbook. Target setting using Goal Seek and Solver are easy to apply. Choosing the assay composition, cutpoints and split ratios to set asphalt feed properties and flow.





### Asphalt Predictive Model using Spiral SDK

Here are the variables available.

|          |                      | P           | 0           | D          | F           | F            | 0          | u            |             |                     | V          |            | 5.4       |         | 0        | D       | 0         | D       | 0         | T               |           |
|----------|----------------------|-------------|-------------|------------|-------------|--------------|------------|--------------|-------------|---------------------|------------|------------|-----------|---------|----------|---------|-----------|---------|-----------|-----------------|-----------|
| -        |                      |             |             |            |             |              |            |              |             |                     |            |            | 111       | 10      |          |         |           |         |           |                 |           |
| <u>ا</u> | lowsheet - Advanc    | ed MultiFee | =AssayLieth | lowsheetC  | utMatrixMul | itiFeed(Flow | Basis, Fee | ds Range, Pi | roperty Cod | e Range, Stream Ran | ge, Towers | Hange, Max | Show He   | elp Fai | ge j     |         |           |         |           |                 |           |
| 2.       | Sock to Introduction |             |             |            |             |              |            |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |
| 3        |                      |             |             |            |             |              |            |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |
| 1        |                      | 1CU_FEED    | AB1         | 2CU_FEED   | AR2         | 3CU_FEED     | AR-3       | AR12         | AR23        | AR123               | HCProd1    | VDU1FD     | VB1       | AR23    | HCProd2  | ¥DU2FD  | VR2       | ¥R2_ASP | VRL ASP   | 2               | ASPHAL1   |
| 5        | DEN.15C.a/cc         | 0.8820      | 0.9774      | 0.9527     | 1.0068      | 0.9491       | 1.0017     | 0.9916       | 1.0051      | 0.9936              | 0.9641     | 0.9936     | 1.0438    | 1.0051  | 0.9641   | 1.0051  | 10419     | 1.019   | 1.0438    | 1.041910225     | 1.0418907 |
|          | MCBT ×               | 6.86        | 13 45       | 9.32       | 14.50       | 9.36         | 14.25      | 13.96        | 14 41       | 14.02               | 10.32      | 14.02      | 26.06     | 14.41   | 10.32    | 4 4     | 74.99     | 24.99   | 26.06     | 24 99447082     | 25 435813 |
| ; ]      | 197 v                | 4.67        | 9.15        | 4.53       | 7.06        | 4.91         | 749        | 9.12         | 7.20        | 8.00                | 4.16       | 9.00       | 15.54     | 7.20    |          | 7.20    | 12.94     | 12.94   | 15.54     | 12 92514577     | 14 393005 |
|          | 2EN 2EC mm/10        | 1101004.10  | 0070.00     | 07104.00   | 1467.40     | 01400.70     | 2110-10    | 2640.74      | 1040.00     | 2200.00             | £6067.97   | 2200.00    | 10.04     | 10      | 66067.97 | 1040.22 | 10.57     | 10.57   | 0.04      | 10 ECE00EC      | 9.1752021 |
| 2        | -EN,230,000          | 1121034.12  | 0313.00     | 6r134.03   | 1407.40     | 01400.70     | 2110.10    | 3046.74      | 1040.32     | 3200.00             | 00001.01   | 3208.66    | 100 5     | 1040.32 | 00007.07 | 1040.32 | 10.07     | 10.57   | 6.00      | 10.5650056      | 3.1733321 |
| ·        | 15,2000,050          | 0.97        | 8.13        | 2.68       | 13.82       | 2.06         | 12.30      | 10.58        | 13.30       | 10.90               |            | 10,90      | 128.57    | 13.30   | 3.18     | 13.30   | 105.39    | 105.39  | 128.57    | 106-243770      | 11.07913  |
| 0        | ris,300C,est         | 0.50        | 2.58        | 1.09       | 3.08        | 1.06         | 2.96       | 2.87         | 3.04        | 89                  | 1.24       | 2.89       | 11.14     | 3.04    | 1.24     | 3.04    | 9.03      | 9.03    | 11.14     | 03, 599265      | 9.9825134 |
| 1        | LOWY,kbbi/d          | 95.00       | 43.72       | 135.00     | 82.08       | 65.00        | 40.48      | 84.77        | 6 8         | 105.00              | 0.00       | 105.00     | 50.67     | 61.28   | 0.00     | 61.28   | 32.53     | 26.02   | 54        | 26.02415444     | 67.562757 |
| 2        | LOVV,t/d             | 13321.15    | 6794.62     | 20448.64   | 13138.23    | 9808.67      | 6446.23    | <b>B63</b> 4 | 9792.28     | 16586.91            | 0.00       | 16586.91   | 1 8409.24 | 9792.28 | 0.00     | 9792.28 | 5388.64   | 4310.91 | 6727.39   | 4310.913888     | 11191.593 |
| 3        | SUL,X                | 1.78        | 2.85        | 1.48       | 1.89        |              | 1.87       | 2.38         | 1.88        | 2.28                | 4.32       | 2.28       | 2.75      | 1.88    | 4.32     | 1.88    | 2.26      | .26     | 2.75      | 2.26            | 2.58      |
| 4 :      | SOF,C                | 17.11       | 37.13       | 24-16      | 40.26       | 26.93        | 41.36      | 38.67        | 40.62       | 39.19               | 21.65      | 39.19      | 62.45     | 40.62   | 21.65    | 40.62   | 61.       | 61.94   | 62.45     | 61.94           | 61.70     |
| 5        |                      |             |             |            |             |              |            |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |
|          |                      |             |             | StringingE | Bectifuing  |              |            |              |             |                     |            |            |           |         |          |         |           | Feed    | Feed rate | Assan           | Blend     |
| e        | Towers               | Pipes       | ECP         |            | FL          | Pressure     | CutPt,V,C  | Mizers       | Inputs      | Output              |            | Splitters  | Input     | Outputs | Ratio    |         | Feeds     | rate    | lloM      | Reference       | Batio     |
| ° .      |                      | CACI        |             | -          |             |              |            | LU:          | 402.4       | 4.019               |            |            | 4.02      | 402.2   | 0.5      |         |           | 05      | LEEUA A   | A DUDCU 1000 14 | 00.01     |
| 1        | -001                 | GASI        |             |            |             | atm          |            | Mizeriz      | ABZ_1       | ARIZ                |            | ZICU_ARS   | ABZ       | AHZ_3   | 0.5      |         | ICO_FEED  | 35      | KDDIrd    | ARLHSH333-IA    | 00.3      |
| 8        | CU_FEED              | CNI         | 16.56       | 5.68       | 5.73        | 1.00         |            |              | ABI         |                     |            |            |           | AB2_1   | 0.5      |         |           |         | -         | AHALT332-S      | 0         |
| 9        |                      | RK1         | 137.78      | 6.10       | 6.04        | 1.00         |            |              |             |                     |            |            |           |         |          |         |           |         |           | O. NT234-L      | 22.91     |
| :0       |                      | RD1         | 265.57      | 2.06       | 3.41        | 1 1.00       |            | Mizer23      | AR2_3       | AR23                |            | 31CU_ARS   | AB-3      | AB3_1   | 0.5      |         |           |         |           | CSTIL 183-H     | 5.59      |
| :1       |                      | HGO1        | 412.32      | 1.91       | 1.84        | 1.00         |            |              | AR3_2       |                     |            |            |           | AR3_2   | 0.5      |         |           |         |           | ESP035          | 5.93      |
| :2       |                      | AB1         | 401.26      | 1.01       | 2.78        | 1.00         | 373.3      |              |             |                     |            |            |           |         |          |         |           |         |           | NAPO191-L 🔶     | 26.34     |
| :3       |                      |             |             |            |             |              |            | Mizer (5)    | AB3 1       | AR123               |            | 2CU VRSF   | VR2       | VR2 ASP | 0.8      |         |           |         |           | ABXLT393-L      | 6.17      |
| 4        |                      |             |             |            |             |              |            |              | AB12        |                     |            |            |           | VR2 RDS | 0.2      |         |           |         |           | IHSSR152        | 1         |
| 5 1      | CDU2                 | GAS2        | E I         | 1          |             | atm          |            |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |
| 6        |                      | CN2         | 12.66       | 3 38       | 3.43        | 100          |            | Miyor (4)    | AB123       | VDUIED              |            | ICIL VRSP  | VB1       | VB1 ASP | 0.8      |         |           |         |           |                 |           |
| 2        |                      | LIVE2       | 14.4 90     | 199        | 157         | 100          |            | I-IIAEI (T)  | HCProd1     | 100110              |            | 100_11131  |           | VD1 DDC | 0.0      |         | 2011 5550 | 125     | keeld     | ODINT 224 L     |           |
|          |                      | 111/2       | 140.00      | 0.00       | 0.07        | 1.00         |            |              | nerioui     |                     | '          |            |           | THI_HDS | 0.2      |         | 200_FEED  | 155     | Kobird    | ORINI 234-L     |           |
| :0<br>-  |                      |             | 140.06      | 6.33       | 6.27        | 1.00         |            |              |             | UDUAED              |            |            | LUGD I    |         |          |         |           |         |           | SJVHX141-L      | 40        |
| :9       |                      | LDZ         | 225.23      | 3.24       | 4.83        | 1.00         |            | Mizer (6)    | AHZ3        | ¥DUZED              |            | HUSplit    | HCProd    | HCProdi | 0        |         |           |         |           | MARLM133-1M     | 0         |
| :0       |                      | HD2         | 424.81      | 1.76       | 4.63        | 1.00         |            |              | HCProd2     |                     |            |            |           | HCProd2 | 0        |         |           |         |           | AHKAS210-H      | 16.5      |
| 1        |                      | AR2         | 415.38      | 1.43       | 3.60        | 1.00         | 400.2      |              |             |                     |            |            |           | HCProd3 | 1        |         |           |         |           | NAPO181S-1H     | 16.5      |
| :2       |                      |             |             |            |             |              |            | MizASP       | ¥R2_ASP     | ASPHALT_FD          |            |            |           |         | -        | -       |           |         |           | RNCDH182-L      | 27        |
| 3        | CDU3                 | GAS3        | C I         |            |             | atm          |            |              | VR1_ASP     |                     |            |            |           |         |          |         |           |         |           | DOBAX211-M      | 0         |
| :4 :     | CU_FEED              | CN-3        | 3.97        | 3.91       | 4.00        | 1.00         |            |              | HCProd3     |                     |            |            |           |         |          |         |           |         |           | IHSSR152        | 1 1       |
| :5       |                      | PA1-3       | 147.30      | 2.15       | 3.22        | 1.00         |            |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |
| :6       |                      | BK-3        | 145.33      | 7.11       | 7.60        | 1.00         |            | MizRDS       | ¥R2 RDS     | RDS FD              |            |            |           |         |          |         |           |         |           |                 |           |
| 17       |                      | BD-3        | 235.70      | 3.29       | 4.15        | 1.00         |            |              | VB1 BDS     | -                   |            |            |           |         |          |         | 3CU FEED  | 65      | kbbl/d    | OBINT234-L      | 10        |
|          |                      | HGO.3       | 427.87      | 193        | 2.56        | 100          |            |              |             |                     |            | -          |           |         |          |         |           |         |           | S IVHY141-I     | 40        |
| 3        |                      | AB-3        | 422.67      | 0.95       | 6.82        | 100          | 386.7      |              |             |                     |            | 0          |           |         |          |         |           |         |           | MARI MISS-IM    |           |
| 0        |                      |             | 766.01      | 0.00       | 0.02        | 1.00         | 000.1      | -            |             |                     |            | -          |           |         |          |         |           |         |           | AHKASOIO-H      |           |
|          | 70111                | ECI         | h           | 1          |             | - 100        |            |              |             |                     |            |            |           |         |          |         |           |         |           | NU DOMONO AN    | 10.5      |
| 1        | DUIED                | LYCO        | 240.40      | 1.11       | 107         |              | 250 F      | -            |             |                     |            |            |           |         |          |         |           |         |           | DUODUIOS-IR     | 10.5      |
| 2        | DUIFD                | 1400        | 246.46      | 1.44       | 1.27        | 0.01         | 308.0      | 1            |             |                     |            |            | -         |         |          |         |           |         |           | HINCOH182-L     | 27        |
| .3       |                      | H¥GO        | 359.12      | 0.88       | 1.25        | i 0.01       | 523.8      |              |             |                     |            |            |           |         |          |         |           |         |           | DOBAX211-M      | 0         |
| .4       |                      | SLOPWAX     | 566.62      | 1.28       | 1.23        | 0.01         | 544.5      |              |             |                     |            |            |           |         |          |         |           |         |           | IHSSR152        | 1 1       |
| .5       |                      | VB1         | 556.80      | 1.29       | 1.00        | 0.01         | 554.1      |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |
| .6       |                      |             |             |            |             |              |            |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |
| 7        | /DU2                 | SlopOil     | E I         |            |             | atm          |            |              |             |                     |            |            |           | 1       |          |         | HCProd    | 1       | kbbl/d    | IHSSR152        | 1 1       |
| 8        | /DII2ED              | 17602       | 215 11      | 3.52       | 197         | 0.01         |            |              |             |                     |            |            | <u> </u>  |         |          |         |           | · · ·   |           | IBAQI164        | i i       |
|          |                      | HYG02       | 363 59      | 1.02       | 1.00        | 0.01         |            |              |             |                     |            |            |           |         |          |         |           |         |           | BHSSR152        |           |
| -        |                      | 61/2        | 503.03      | 1.20       | 1.20        | 0.01         |            |              |             |                     |            |            |           |         |          |         |           |         |           | BHODIES         |           |
| 0        |                      | 542         | 513.99      | 1.14       | 1.65        | 0.01         | E40.4      | -            |             |                     |            |            | -         |         |          |         |           |         |           | UDOHODIE2:      |           |
| 1        |                      | VH2         | 544.62      | 1.93       | 1.29        | 0.01         | 519.1      |              |             |                     |            |            |           |         |          |         |           |         |           | IRM/ISBIS/S     |           |
| 2        |                      |             |             |            |             |              |            |              |             |                     |            |            |           |         |          |         |           |         |           | IRGHSR157       |           |
|          |                      |             |             |            |             |              |            |              |             |                     |            |            |           |         |          |         |           |         |           | KURDS_HSSR18    |           |
| 3        |                      |             |             |            | Olara Maria | -            |            |              |             |                     |            |            | -         |         |          |         |           |         |           |                 |           |
| 4        |                      |             |             |            | ыор∀ах<br>  |              |            |              |             |                     |            |            |           |         |          |         |           |         | L         | IRGHSR215       |           |
| E 1      |                      |             |             |            | 152         |              |            |              |             |                     |            |            |           |         |          |         |           |         |           |                 |           |

### **Replication for Quick Scenarios**



| н           | I          | J                   | к                 | L           | M             | N       | 0        | Р       | Q         | R       | S         |         |
|-------------|------------|---------------------|-------------------|-------------|---------------|---------|----------|---------|-----------|---------|-----------|---------|
| s Range, Pr | operty Cod | e Range, Stream Rar | ige, Towers       | Range, Miss | f<br>Show bir | Ran     | ge )     |         |           |         |           |         |
|             |            |                     |                   |             | Show He       | ip .    |          |         |           |         |           |         |
| AD12        | AD22       | AD122               | UCDradt           | VDUIED      | VDI           | AD22    | UCDrod2  | VDUSED  | VD2       | VD2 ACC | VD1 ACD   | VD2     |
| 0.0010      | 10051      | 0.0000              | ncriour<br>0.9641 | 10010       | 10420         | 10051   | 0.0041   | 10051   | 10419     | 10419   | 10429     | 10      |
| 12.96       | 14 41      | 0.3336              | 10.364            | 14.02       | 1.0430        | 14.41   | 10.22    | 14 41   | 24.99     | 24.99   | 1.0436    | 24.9    |
| 8 12        | 7.20       | 8.00                | 4 16              | 8.00        | 15.54         | 7.20    | 4 16     | 7.20    | 12.94     | 12.94   | 15.54     | 12.9    |
| 3546.74     | 1648.32    | 3208.66             | 66067.87          | 3208.66     | 6.85          | 1648.32 | 66067.87 | 1648.32 | 10.57     | 10.57   | 6.85      | 10.     |
| 10.58       | 13.30      | 10.90               | 3,18              | 10.90       | 128.57        | 13.30   | 3.18     | 13.30   | 105.39    | 105.39  | 128.57    | 105     |
| 2.87        | 3.04       | 2.89                | 1.24              | 2.89        | 11.14         | 3.04    | 1.24     | 3.04    | 9.03      | 9.03    | 11.14     | 9.03    |
| 84.77       | 61.28      | 105.00              | 0.00              | 105.00      | 50.67         | 61.28   | 0.00     | 61.28   | 32.53     | 26.02   | 40.54     | 26.0    |
| 13363.74    | 9792.28    | 16586.91            | 0.00              | 16586.91    | 8409.24       | 9792.28 | 0.00     | 9792.28 | 5388.64   | 4310.91 | 6727.39   | 431     |
| 2.38        | 1.88       | 2.28                | 4.32              | 2.28        | 2.75          | 1.88    | 4.32     | 1.88    | 2.26      | 2.26    | 2.75      |         |
| 38.67       | 40.62      | 39.19               | 21.65             | 39.19       | 62.45         | 40.62   | 21.65    | 40.62   | 61.94     | 61.94   | 62.45     |         |
| Misers      | Inputs     | Output              |                   | Splitters   | Input         | Outputs | Ratio    |         | Feeds     | Feed    | Feed rate | Assay   |
| Mizer12     | AB2_1      | AB12                |                   | 21CU ABS    | AB2           | AB2 3   | 0.5      |         | 1CU FEED  | 95      | kbbl/d    | ABLBS   |
|             | AB1        |                     | 1                 |             |               | AB2 1   | 0.5      |         |           |         |           | ABALT   |
|             |            |                     | 1                 |             |               |         |          | 1       |           |         |           | ORINT:  |
| Mizer23     | AR2_3      | AR23                |                   | 31CU_ARS    | AR-3          | AB3_1   | 0.5      | ]       |           |         |           | CSTILA  |
|             | AR3_2      |                     |                   |             |               | AR3_2   | 0.5      |         |           |         |           | ESP03   |
|             |            |                     |                   |             |               |         |          |         |           |         |           | NAP01   |
| Mizer (5)   | AB3_1      | AR123               |                   | 2CU_¥RSP    | VR2           | VR2_ASP | 0.8      |         |           |         |           | ABXLT   |
|             | AB12       |                     | -                 |             |               | ¥R2_RDS | 0.2      |         |           |         |           | IHSSRI  |
| Mizor (4)   | AB123      | VOLUED              | 1                 | ICIL VRSP   | VB1           | VRI ASP | 0.8      | 1       |           |         |           |         |
| 1-11aer (+) | HCProd1    | 100110              | 1                 | 100_11101   |               | VBL BDS | 0.0      | 1       | 2CIL FEED | 135     | kbbl/d    | OBINT2  |
|             | ner rour   |                     | 1                 |             |               | TH_HDS  | 0.2      | 1       | LOO_I LLD | 100     | Kobird    | SJVHX1  |
| Mizer (6)   | AR23       | VDU2FD              | 1                 | HCSplit     | HCProd        | HCProd1 | 0        |         |           |         |           | MARLM   |
|             | HCProd2    |                     | 1                 |             |               | HCProd2 | 0        |         |           |         |           | AHKAS2  |
|             |            |                     | 1                 |             |               | HCProd3 | 1        |         |           |         |           | NAPO18  |
| MizASP      | VR2_ASP    | ASPHALT_FD          |                   |             |               |         |          |         |           |         |           | RNCDH   |
|             | VR1_ASP    |                     |                   |             |               |         |          |         |           |         |           | DOBAX   |
|             | HCProd3    |                     | ]                 |             |               |         |          |         |           |         |           | IHSSRI  |
| MizRDS      | VR2_RDS    | RDS_FD              | ]                 |             |               |         |          |         |           |         |           |         |
|             | VRI_RUS    |                     | ]                 |             |               |         |          |         | 3CU_FEED  | 65      | KDDI/d    | ORINT2  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | SJYHX1  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | AUKYON  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | MADOIS  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | PNCDH   |
|             |            |                     |                   |             |               |         |          |         |           |         |           |         |
|             |            |                     |                   |             |               |         |          |         |           |         |           | IHSSB15 |
|             |            |                     |                   |             |               |         |          |         |           |         |           |         |
|             |            |                     |                   |             |               | 1       |          |         | HCProd    | 1       | kbbl/d    | IHSSR15 |
|             |            |                     |                   |             |               |         |          |         |           |         |           | IRAQI16 |
|             |            |                     |                   |             |               |         |          |         |           |         |           | BHSSRI  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | BHSRI15 |
|             |            |                     |                   |             |               |         |          |         |           |         |           | IRQHSR  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | IRQHSR  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | KURDS_  |
|             |            |                     |                   |             |               |         |          |         |           |         |           | IRQHSI  |
|             |            |                     |                   |             |               |         |          |         |           |         |           |         |
| t - Adva    | nced M     | ultiFeed S          | PRCv1             | ELSEG       | 24   SI       | R AS    | PHALT    | (3) A   | SPHALT    | (2)     | ASPHA     | LT      |

Each worksheet can be replicated to create identical units, making case studies easy to set up.



**Recut to Stream** 

Any stream on the flowsheet can be saved as an assay to the Local Share.

| 1  | Recut to Stream     | n - M | ultiple Feeds   |             | 0000        | rate and Save to I  | Databasa    |        |                 | 1          |            |          |        |           |          |          |         |           |
|----|---------------------|-------|-----------------|-------------|-------------|---------------------|-------------|--------|-----------------|------------|------------|----------|--------|-----------|----------|----------|---------|-----------|
| 2  | Back to Introductio | a     |                 |             | Gene        | erate and save to t | Database    | Delete | e from Database |            |            | CRD_FD2  | LPG2   | LSR2      | HSR2     | JET2     | Diesel2 | 49        |
| 3  | Target Share        |       | Local Database  |             |             |                     |             |        |                 | -          | DEN,15C,gl | 0.8977   | 0.5542 | 0.7240    | 0.7897   | 0.8131   | 0.8559  | $\square$ |
| 4  | Reference           |       | RECUT_MultiFeed | d_Flowshee  | t_ARES2     | Prompt before       | overwriting |        |                 |            | MCRT,%     | 8.66     | 0.00   | 0.00      | 0.00     | 0.00     | 0.00    | $\square$ |
| 5  | Name                |       | RECUT MultiFeed | Flowsheet   | ARES2       |                     |             |        |                 |            | SUL,%      | 1.80     | 0.00   | 0.04      | 0.06     | 0.30     | 1.14    | $\square$ |
| 6  | Stream              |       | ARES2           |             |             |                     |             |        |                 |            | NIK,ppm    | 57.46    | 0.00   | 0.00      | 0.00     | 0.00     | 0.00    | $\square$ |
| 7  |                     |       | 4               |             |             |                     |             |        |                 |            | VAN,ppm    | 155.00   | 0.00   | 0.00      | 0.00     | 0.00     | 0.00    | $\square$ |
| 8  |                     |       | 1               |             |             |                     |             |        |                 |            | VIS,150C,c | 2.17     | 0.23   | 0.31      | 0.41     | 0.50     | 0.84    |           |
| 9  |                     |       |                 |             |             |                     |             |        |                 |            | FLOWV,kb   | 185.00   | 1.56   | 30.78     | 3.07     | 17.93    | 29.93   | $\square$ |
| 10 |                     |       |                 |             |             |                     |             |        |                 |            | FLOWW, No  | 26404.14 | 137.57 | 3542.57   | 385.04   | 2318.39  | 4073.06 | 4         |
| 11 | Generated Pro       | perte | es              |             |             |                     |             |        |                 |            |            |          |        |           |          |          |         |           |
| 12 |                     |       |                 | CRD_FD2     | ARES2       | VDU2_FD             | CRD_FD1     | VDU1   | PAS_CRD         |            |            |          |        |           |          |          |         |           |
| 13 | FlowRate            |       | FLOWV,kbbl/d    | 90.33802477 | 90.33802477 | 90.33802477         | 90.33802477 | 90.34  | 90.33802477     |            |            |          |        |           |          |          |         |           |
| 14 | Density             |       | DEN,15C,g/cc    | 0.990812607 | 0.990812607 | 0.990812607         | 0.990812607 | 0.991  | 0.990812607     |            |            |          |        |           |          |          |         |           |
| 15 | Sulphur             |       | SUL,%           | 2.739767034 | 2.739767034 | 2.739767034         | 2.739767034 | 2.74   | 2.739767034     |            |            |          |        |           |          |          |         |           |
| 16 | Pour Point          |       | PPT,C           | 62.2164301  | 62.2164301  | 62.2164301          | 62.2164301  | 62.22  | 62.2164301      |            |            |          |        |           |          |          |         |           |
| 17 | Viscosity at 50     | IC 📘  | VIS,50C,cSt     | 5628.615737 | 5628.615737 | 5628.615737         | 5628.615737 | 5629   | 5628.615737     |            |            |          |        |           |          |          |         |           |
| 18 | Viscosity at 10     | 00    | VIS,100C,cSt    | 256.1599108 | 256.1599108 | 256.1599108         | 256.1599108 | 256.2  | 256.1599108     |            |            |          |        |           |          |          |         |           |
| 19 | Freeze Point        | 1     | FPT,C           | 61.92827681 | 61.92827681 | 61.92827681         | 61.92827681 | 61.93  | 61.92827681     |            |            |          |        |           |          |          |         |           |
| 20 |                     | 1     |                 |             |             |                     |             |        |                 |            |            |          |        |           |          |          |         |           |
|    |                     | 1     |                 |             |             |                     |             |        |                 |            |            |          |        |           |          |          |         | Γ.        |
|    |                     |       |                 |             |             |                     |             |        |                 |            |            |          |        |           |          |          |         | i i       |
| 21 | Towers              | I.    | Pipes           | ECP         | StrippingFl | RectifyingF         | Pressure    | _      |                 | Mixers     | Inputs     | Output   |        | Splitters | Input    | Outputs  | Ratio   |           |
| 22 | CDU2                | í.    | LPG2            | F           |             |                     | atm         |        |                 | Mixer (6)  | 4SCspl     | ARES2    |        | 4SC_spl   | 4SC2     | 4SC2net  | 0.25    |           |
| 23 | CRD_FD2             |       | LSR2            | 31.09999918 | 4.34        | 4.32                | 1           |        |                 |            | Atm Resida |          |        |           | _        | 4SCspl   | 0.75    |           |
| 24 |                     |       | HSR2            | 359.2798041 | 3.8         | 3.97                | 1           |        |                 |            | ATB_VAC    |          |        |           |          |          |         |           |
| 25 |                     |       | JET2            | 375.1352816 | 2.16        | 5.58                | 1           |        |                 | 100        |            |          |        | VAC_SPL   | VacResid | VACR2_ST | 0       |           |
| 26 |                     |       | Diesel2         | 503.5547036 | 1.5         | 6.39                | 1           |        |                 | Mixer (8)  | VACR2_VD   | VDU2_FD  |        |           |          | VACR2_VD | 1       |           |
| 27 |                     |       | 4SC2            | 683.0944372 | 1.36        | 5.3                 |             |        |                 |            | VAC2_IN    |          |        |           |          |          |         |           |
| 28 |                     |       | Atm Resid2 📃    | 821.178759  | 3.17        | 1.94                |             |        |                 |            | ATB_VDU2   |          |        | PAS_ATB   | ATB      | ATB_VAC  | 0       |           |
| 29 |                     |       | -               |             |             |                     |             |        |                 |            |            |          |        |           |          | ATB_VDU2 | 1       |           |
| 30 | VAC2                |       | SLP-6125        | F           |             |                     | atm         |        |                 | Mixer (9)  | SLOP       | 1SC_VDUa |        |           |          | ATB_VDU1 | 0       |           |
| 31 | ARES2               |       | 5SC2            | 600         | 1.94        | 4.53                | 1           |        |                 |            | 1SC_VDU    |          |        |           |          |          |         |           |
| 32 |                     |       | 7SC2            | 656.5432152 | 1.55        | 4.18                | 1           |        |                 |            |            |          |        |           |          |          |         |           |
| 33 |                     |       | VacResid        | 733 8787156 | 0.94        | 139                 | 1           |        |                 | Mixer (10) | 1SC VDHa   | 12SC VDU |        |           |          |          |         |           |



Series of Binaries to initialize rigorous column flowrates

#### Liquid product and produced with over head flow and composition

|    | А                    | В                 | С              | D               | E                   | F               | G              | Н               | I                     | J                | К                 | L              |
|----|----------------------|-------------------|----------------|-----------------|---------------------|-----------------|----------------|-----------------|-----------------------|------------------|-------------------|----------------|
| 1  | Flowsheet - Advanced | =AssayGetFlowshee | tCutMatrix(Fee | d Reference Rai | nge, Flowsheet      | Feed Pipe, Prop | erty Code Rang | ge, Stream Rang | <b>e,</b> Towers Rang | ge , Mixers Rang | e , Splitters Ran | ge, Swing Cuts |
| 2  | Back to Introduction |                   |                |                 |                     |                 |                |                 |                       |                  |                   |                |
| 3  |                      | Crude             | OH1            | AR1             | OH2                 | HGO1            | ОНЗ            | RD1             | OH4                   | RK1              | GAS1              | CN1            |
| 4  | DEN,15C,g/cc         | 0.89320           | 0.80481        | 0.98550         | 0.79867             | 0.91417         | 0.75335        | 0.87685         | 0.69288               | 0.80514          | 0.57074           | 0.704054106    |
| 5  | API,none             | 26.84046          | 44.24515       | 12.00493        | 45.59928            | 23.20817        | 56.27883       | 29.79670        | 72.68479              | 44.17440         | 116.44629         | 69.44154517    |
| 6  | SUL,%                | 1.68056           | 0.64445        | 2.61595         | 0.57122             | 1.78229         | 0.14453        | 1.20363         | 0.04060               | 0.22113          | 0.00459           | 0.043272837    |
| 7  | РРТ,С                | -35.60713         | -9.03371       | 36.02007        | -13.74267           | 15.37116        | -54.66739      | -0.86589        | -98.25140             | -46.71257        | -122.07905        | -97.2779315    |
| 8  | VIS,20C,cSt          | 48.96401          | 2.35844        | 45345.84140     | 2.07095             | 59.28078        | 0.98501        | 11.71098        | 0.58003               | 1.72929          | 0.36087           | 0.606780249    |
| 9  | VIS,30C,cSt          | 30.34020          | 1.97811        | 15353.70889     | 1.75830             | 35.44819        | 0.88818        | 8.42031         | 0.53819               | 1.48799          | 0.34490           | 0.561673038    |
| 10 | YLD,W,%              | 100.00000         | 47.44579       | 52.55421        | 44.57708            | 2.86872         | 26.61767       | 17.95941        | 11.29427              | 15.32340         | 0.77967           | 10.51459169    |
| 11 | YLD,V,%              | 100.00000         | 52.50937       | 47.49063        | 49.71463            | 2.79474         | 31.47310       | 18.24153        | 14.51917              | 16.95394         | 1.21661           | 13.30255715    |
| 12 | YLD,V,proportion     | 1.00000           | 0.52509        | 0.47491         | 0.49715             | 0.02795         | 0.31473        | 0.18242         | 0.14519               | 0.16954          | 0.01217           | 0.133025572    |
| 13 |                      |                   |                |                 |                     |                 |                |                 |                       |                  |                   |                |
| 14 | Towers               | Pipes             | ECP            | StrippingFl     | RectifyingFI        | Pressure        |                |                 |                       |                  |                   |                |
| 15 | CDU1                 | OH1               | С              |                 |                     | atm             |                |                 |                       |                  | CDU:              | CAE1           |
| 16 | Crude                | AR1               | 401.2649554    | 1.01138068      | 2.783033057         |                 |                |                 |                       |                  | Ē                 | CASI           |
| 17 |                      |                   |                |                 |                     |                 |                |                 |                       | CE               | 04                | D              |
| 18 | CDU2                 | OH2               | , c            |                 |                     | atm             |                |                 |                       |                  | OVH4              | <b>\$</b>      |
| 19 | OH1                  | HGO1              | 412.3185552    | 1.906049605     | 1.844960439         |                 |                |                 |                       |                  |                   |                |
| 20 |                      |                   |                |                 |                     |                 |                |                 |                       | CDU3             |                   |                |
| 21 | CDU3                 | OH3               | с              |                 |                     | atm             |                |                 |                       | оунз             |                   | CN1            |
| 22 | OH2                  | RD1               | 265.5671903    | 2.062756899     | 3.406019988         |                 |                |                 | CDU2                  |                  |                   |                |
| 23 |                      |                   |                |                 |                     |                 |                |                 | OVH2                  | anna             | RK1               |                |
| 24 | CD04                 | OH4               | P              | 6 006077457     | 6 0 4 0 1 0 6 0 0 7 | atm             |                |                 |                       |                  |                   |                |
| 25 | Uns                  | NK1               | 157.7761551    | 0.0908/7457     | 6.040126007         |                 |                | CDU1            | (ann)                 |                  |                   |                |
| 20 | CDUS                 | GASI              | c              |                 |                     | atm             |                | OVH1            | (Lacard)              | RD1              |                   |                |
| 20 | 044                  | CN1               | 16 56120264    | 5 675/11026     | 5 720622844         | aun             | Feed           | 1 million       |                       |                  |                   | 5.72           |
| 20 | 110                  | CHI               | 10.30125304    | 5.575411050     | 5.725055844         |                 | Crude          |                 | HGO1                  |                  |                   | 6.04           |
| 30 |                      |                   |                |                 |                     |                 |                |                 |                       |                  |                   | 3.41           |
| 31 | Feeds                | Assay Reference   | Blend Ratio    | Basis W/V       |                     |                 |                |                 |                       |                  |                   | 1.84           |
| 32 | Crude                | ARLRSH333-1A      | 1              | V               |                     |                 |                | Atm Resid       | due                   |                  |                   | 2,78           |
| 33 |                      | ARALT332-S        | 1              |                 |                     |                 |                |                 |                       |                  |                   |                |
| 24 |                      | ODINT224 L        | -              |                 |                     |                 |                |                 |                       |                  |                   |                |



#### Creating Assays from Scheduler's Plant Data and Scheduler's Blend

| 16 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
|----|--------------------|---------|----------------|-------------|-------------|--------------|----------|---|---------------|----------------|--------------|-------------|-------------|--------------|------------|------------|------------|--------|--------|--------|--------|--------|----------|--------|---------------|
| 17 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 18 |                    | _       |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 19 | Prompt before over | riting  |                |             |             |              |          |   |               |                | -            |             | -           |              |            |            | _          |        |        |        |        |        |          |        |               |
| 20 |                    | Gen     | erate and Save | to Database | Delete from | n Database   | Show Hel | · |               |                |              | $\sim$      | v f 10      | $\sim$       |            | -nt        |            | +-     |        |        |        |        |          |        |               |
| 21 |                    |         |                |             |             |              |          |   |               |                | AS           | 57          | VII         | $() \square$ |            | ап         | 112        | 112    |        |        |        |        |          |        |               |
| 22 |                    |         |                |             |             |              |          |   |               |                | / 10         | Ju          | <b>y</b> 11 |              |            |            |            | ALC    |        |        |        |        |          |        |               |
| 22 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 24 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 26 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 20 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 26 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 27 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 28 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 29 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 30 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 31 |                    |         |                |             |             |              |          |   |               | Feed           | GAS          | LPG         | LSR         | MSR          | 2SC        | 3SC        | HSGO       | HDN    | AB1    | LHDN   | HHDN   | LVGO   | VACR1    | HVGO   | RESID         |
| 32 | Towers             | Pipes   |                | ECP         | StrippingFl | RectifyingFl | Pressure |   | YLD,V,%       | 100            | 0.00239014   | 0.458704    | 8.90623512  | 1.71826019   | 2.74128628 | 7.87017939 | 2.91686526 | 4.132  | 71.254 | 6.6254 | 7.7403 | 1.686  | 55.20237 | 26.001 | 29.202        |
| 33 | CDU                | GAS     |                | F           |             |              | atm      |   | YLD,W,X       | 100            | 0.00072074   | 0.287479    | 6.84764608  | 1.4277113    | 2.36545393 | 7.12185856 | 2.76084034 | 3.9752 | 75.213 | 6.382  | 7.6642 | 1.7049 | 59.46198 | 26.717 | 32.744        |
| 34 | Feed               | LPG     |                | 25          | 1.52679053  | 1.25696613   | -        | l | SPG,15.5555   | 5556C,none     | 0.28         | 0.58194     | 0.71392533  | 0.77153762   | 0.80124575 | 0.84026128 | 0.87888199 | 0.8933 |        | 0.8944 | 0.9194 | 0.939  |          | 0.9541 | 1.0412        |
| 35 |                    | LSR     |                | 100         | 1.52679053  | 1.25696613   | -        | l | CUMP, W, 5%   | ,F             |              |             | 151.5       | 167          | 167        | 236        | 420.5      | 233.5  |        | 387.5  | 513.5  | 546    |          | 585    | 912           |
| 36 |                    | MSR     |                | 185         | 1.52679053  | 1.25696613   | -        | 1 | CUMP, W, 5.02 | K.F            |              |             | 158         | 223.5        | 250        | 334        | 479.5      | 434.5  |        | 465.5  | 616.5  | 666    |          | 686    | 1015          |
| 37 |                    | 2SC     |                | 200         | 0.83451882  | 1.26249315   |          | 1 | CUMP.V.10.0   | IZ.F           |              |             | 171         | 251          | 284        | 370        | 504        | 502    |        | 496.5  | 647    | 717    |          | 728    | 1058          |
| 38 |                    | 3SC     |                | 245.702534  | 1.52679053  | 1.25696613   |          | 1 | CUMP.V.30.0   | 0%.F           |              |             | 204         | 304.5        | 344        | 427        | 556        | 605.5  |        | 562.5  | 700    | 806    |          | 814    | 1178          |
| 39 |                    | HSGC    | 1              | 359 784869  | 0.83451882  | 126249315    |          | 1 | CLIMP V 50.0  | 1% F           |              |             | 229         | 327.5        | 372        | 460        | 587.5      | 657.5  |        | 6015   | 736.5  | 852    |          | 876    |               |
| 40 |                    | HDN     |                | 566 283782  | 123400606   | 1 15536505   |          |   | CLIMP V 70.0  | 1 / F          |              |             | 259.5       | 343          | 396        | 494        | 617.5      | 704    |        | 637    | 773 5  | 890    |          | 938    |               |
| 41 |                    | 0.01    |                | 557 106535  | 136244865   | 0.86558152   |          |   | CLIMP V 90.0  | 1. F           |              |             | 297.5       | 361.5        | 430        | 538        | 662.5      | 773    |        | 679    | 822.5  | 942    |          | 1017   | $\rightarrow$ |
| 40 |                    |         |                | 331.100333  | 1.30244003  | 0.00000102   |          |   | CUMD V 9E 0   |                |              |             | 201.0       | 270          | 430        | 550        | 602.3      | 00000  |        | 696    | 042.5  | 971    |          | 1050   |               |
| 44 | LIACH              | LUDA    |                | -           |             |              |          |   | CUMP U 00.0   | 524,1<br>547 E |              |             | 312.3       | 204 5        | 440        | 530        | 770.5      | 003.3  |        | 700.5  | 043.3  | 1100   |          | 1030   |               |
| 43 | VACT               | LINDIN  |                | 040.70      | 454         | 0.50         | atm 0.40 |   | COMP,W,33.5   | р/ <b>.</b> ,г |              |             | 343.5       | 334.5        | 403        | 000        | 110.5      | 000    |        | 130.5  | 033    | 1122   |          | 1017   |               |
| 44 | ARI                | HILLING |                | 343.70      | 1.54        | 3.50         | 0.10     |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 45 |                    | LVGU    | <u> </u>       | 336.32      | 1.75        | 1.83         | 0.10     |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 46 |                    | VACR    | - L            | 412.66      | 0.70        | 1.55         | 0.10     |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 47 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 48 | VDU1               | HVGC    | ]              | F           |             |              | atm      |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 49 | VACR1              | Resid   |                | 1017.05967  | 1.36244865  | 0.86558152   | 0.01     | l |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 50 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 51 | Fitted             |         |                |             |             |              |          |   | Fitted        |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 52 | Towers             | Pipes   | s l            | ECP         | StrippingFl | RectifyingF  | Pressure |   | Pipes         | ECP            | StrippingFl  | RectifyingF | Pressure    |              |            |            |            |        |        |        |        |        |          |        |               |
| 53 |                    | GAS     |                | C           |             |              | atm      |   | GAS           | С              |              |             | atm         |              |            |            |            |        |        |        |        |        |          |        |               |
| 54 |                    | LPG     |                | 15.69       | 4.47        | 4.53         | 1.00     | 1 | LPG           | 15.055112      | 1 4.69949344 | 4.714861    | 1           |              |            |            |            |        |        |        |        |        |          |        |               |
| 55 |                    | LSR     |                | 39.47       | 4.58        | 4.53         | 1.00     | 1 | LSR           | 45.3567172     | 2 4.52742241 | 4.683045    | 1           |              |            |            |            |        |        |        |        |        |          |        |               |
| 56 |                    | MSR     |                | 160.91      | 2.80        | 4.89         | 1.00     | 1 | MSB           | 160.910394     | 1 2.79877752 | 4.790221    | 1           |              |            |            |            |        |        |        |        |        |          |        |               |
| 57 |                    | 250     |                | 179.14      | 2.14        | 4.67         | 1.00     |   | 2SC           | 179.118248     | 3 2.14640005 | 4.634153    | 1           |              |            |            |            |        |        |        |        |        |          |        |               |
| 58 |                    | 350     |                | 199.99      | 2.08        | 2.95         | 100      |   | 350           | 199,916472     | 2 08177741   | 2 941413    | 1           |              |            |            |            |        |        |        |        |        |          |        |               |
| 59 |                    | HSG     | n              | 289.28      | 2.84        | 3.35         | 100      |   | HSGO          | 289 422046     | 3 2 83728682 | 3 387521    | i           |              |            |            |            |        |        |        |        |        |          |        |               |
| 03 |                    | HON     | 6              | 322.11      | 158         | 137          | 100      |   | HDN           | 322 306007     | 7 158314902  | 1 381226    | 1           |              |            |            |            |        |        |        |        |        |          |        |               |
| 61 |                    | AD1     |                | 307.64      | 157         | 1.09         | 100      |   | AP1           | 308 02660      | 1 156871121  | 1.076012    |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 62 |                    | ani     |                | 301.04      | Lor         | 1.00         | 1.00     |   | mni           | 300.02000      | 1 1.30011121 | 1.010012    |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 02 |                    | LUDA    |                | -           |             |              |          |   |               | c              |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 63 |                    | LHUN    |                | 050.04      | 4.50        | 0.50         | atm      |   | LINDIN        | L              | 4 50005007   | 0.550007    | atm         |              |            |            |            |        |        |        |        |        |          |        |               |
| 64 |                    | HHDM    | N .            | 358.21      | 1.53        | 3.53         | 0.10     |   | HUN           | 358.230148     | 5 1.52325897 | 3.555287    | 0.1         |              |            |            |            |        |        |        |        |        |          |        |               |
| 65 |                    | LVGC    | 1              | 429.13      | 6.80        | 0.65         | 0.10     |   | LVGU          | 429.05607      | 1 6.82941577 | 0.657359    | 0.1         |              |            |            |            |        |        |        |        |        |          |        |               |
| 66 |                    | VACE    | 41             | 411.72      | 0.77        | 1.20         | 0.10     |   | VACR1         | 411.649334     | i 0.7690172  | 1.198302    | 0.1         |              |            |            |            |        |        |        |        |        |          |        |               |
| 67 |                    |         |                |             |             |              |          |   |               |                |              |             |             |              |            |            |            |        |        |        |        |        |          |        |               |
| 68 |                    | HVG     | 0              | C           |             |              | atm      |   | HVGO          | C              |              |             | atm         |              |            |            |            |        |        |        |        |        |          |        |               |

| L. | Спри             | varu                |        | VIEW    |          | I          |        | D    | atavase    | отари         | ing          |                      |       |       |         |   |
|----|------------------|---------------------|--------|---------|----------|------------|--------|------|------------|---------------|--------------|----------------------|-------|-------|---------|---|
| l  | گ <mark>∟</mark> | ∑ Last N            | lod DB |         | 1: CVX C | FSL Number | Sample | REC? | 1: CVX Ass | Reference     | Traded Crude | Name                 | Nearn | API   | Sul(%w) | C |
|    |                  | 11/16/2022 10:32:01 | AM Use | r Datab |          |            |        |      |            | XXXCDU1_1467a | Unknown      | XXX Plant Data Assay |       | 20.48 | 1.98    | ś |



|    | Creating Ass       | ays from Schedul          | er's Plant D    | Data and Sc | heduler's Blend |
|----|--------------------|---------------------------|-----------------|-------------|-----------------|
|    |                    |                           |                 |             |                 |
| Pr | ompt Before Overwr | FALSE                     |                 |             |                 |
| Re | eference           | XXX_CU1_31Oct22           |                 | Cot DIA     |                 |
| N  | ame                | XXX ADJ Daily Crude Blend | CU1 310ct22 0   | Get RIA     |                 |
| Tr | adedCrude          | XXX CU1 Daily             | Prior days data |             |                 |
| 2  | - Sample Date      | 10/31/2022                | 30              |             |                 |
| Di | atabase            | Local Database            |                 |             |                 |
| -  |                    |                           |                 |             |                 |

Dim count As Integer count = 2 If Not (objMyRecordset.EOF And objMyRecordset.BOF) Then While Not objMyRecordset.EOF Set rngRIAData = Worksheets("RIAdata").Range("A1") For j = 0 To objMyRecordset.Fields.count - 1 rngRIAData(1, j + 1).Value = objMyRecordset.Fields(j).name rngRIAData(count, j + 1).Value = objMyRecordset.Fields(j).name rngRIAData(count, j + 1).Value = objMyRecordset.Fields(j).Value Nexit j count = count + 1 objMyRecordset.MoveNex Wend End If

|   | N.4 | A              | В             |              | С                  | D           |                |
|---|-----|----------------|---------------|--------------|--------------------|-------------|----------------|
|   | NG  | TankCode       | Inventor/Date | VersionDatet | ime                | Total/olur  | DraductCode    |
|   | -   |                | A OVA IDODD   | VersionDatet | 0-t-b 00, 0000     | Total Volum | HAVAFOOD       |
|   | 2   | CRD_CU1_DAILY  | 10/1/2022     | Monday       | October 03, 2022   | 26.326      | MAYAEZZU       |
| _ | 3   | CRD_CU1_DAILY  | 10/1/2022     | Monday.      | October 03, 2022   | 8.326       | MARIN146       |
| l | 4   | CRD CU1 DAILY  | 10/1/2022     | Monday       | October 03, 2022   | 14.596      | ISTHM324PASR0  |
| 1 | 5   | CPD CUIL DAILY | 10/1/2022     | Monday       | October 03, 2022   | 24.816      | MOI 0221       |
|   | -   | ORD_COT_DAILT  | 10/1/2022     | monuay       | 0000001003,2022    | 24.010      | molozzi i      |
|   | 6   | CRD_CU1_DAILY  | 10/1/2022     | Monday       | October 03, 2022   | 14./8/      | PMIAC14PASRC   |
|   | 7   | CRD_CU1_DAILY  | 10/1/2022     | Monday       | October 03, 2022   | 30.406      | PRGNI139       |
|   | 8   | CRD_CU1_DAILY  | 10/1/2022     | Monday       | October 03 2022    | 5 109       | PASOTC273      |
|   | 0   | CPD CUIL DAILY | 10/1/2022     | Monday       | October 03, 2022   | 0.535       | BVCTS310       |
|   | 3   | CRD_COT_DAILT  | 10/1/2022     | monuay       | 0000001 03, 2022   | 5.555       | 01013313       |
|   | 10  | CRD_CU1_DAILY  | 10/1/2022     | Monday       | October 03, 2022   | 45.268      | DWS296         |
|   | 11  | CRD_CU1_DAILY  | 10/2/2022     | Tuesday      | October 04, 2022   | 28.61       | MOL0221        |
|   | 12  | CRD_CU1_DAILY  | 10/2/2022     | Tuesday      | October 04 2022    | 28,936      | MAYAE220       |
|   | 42  | CDD CUIL DAILY | 10/2/2022     | Tuesday      | October 04, 2022   | 5 0 1 9     | DACOTC272      |
| 1 | 10  | CRD_CUT_DAILT  | 10/2/2022     | Tuesuay      | OCIODEI 04, 2022   | 5.010       | PASUICZ75      |
|   | 14  | CRD_CU1_DAILY  | 10/2/2022     | Tuesday      | October 04, 2022   | 8.701       | MARIN146       |
|   | 15  | CRD_CU1_DAILY  | 10/2/2022     | Tuesday      | October 04, 2022   | 9.936       | PMIAC14PASRC   |
|   | 16  | CRD_CU1_DAILY  | 10/2/2022     | Tuesday      | October 04 2022    | 31 132      | PRGNI139       |
|   | 47  | CDD CUA DAILY  | 40/2/2022     | Tuesday      | October 04, 2022   | 44.642      | ICTHN224DA CD/ |
|   | 17  | CRD_CUT_DAILY  | 10/2/2022     | Tuesday      | October 04, 2022   | 14.013      | IST MISZ4PASK  |
|   | 18  | CRD_CU1_DAILY  | 10/2/2022     | Tuesday      | October 04, 2022   | 8.791       | BYCTS319       |
|   | 19  | CRD CU1 DAILY  | 10/2/2022     | Tuesday      | October 04, 2022   | 2.471       | BASRH228       |
|   | 20  | CRD CUI1 DAILY | 10/2/2022     | Tuesday      | October 04 2022    | 40 269      | DW/\$296       |
|   | 24  |                | 40/2/2022     | Medeceday    | October 04, 2022   | 45.004      | ICTUM024DA CD/ |
|   | 21  | CRD_CUT_DAILT  | 10/3/2022     | wednesday    | October 05, 2022   | 15.021      | ISTRMSZ4PASK   |
|   | 22  | CRD_CU1_DAILY  | 10/3/2022     | Wednesday    | October 05, 2022   | 5.052       | PASOTC273      |
|   | 23  | CRD CU1 DAILY  | 10/3/2022     | Wednesday    | October 05, 2022   | 10.168      | MARIN146       |
|   | 24  | CRD CILL DARY  | 10/3/2022     | Wedneeday    | October 05, 2022   | 38.40       | ΜΔΥΔΕ220       |
|   | 24  | ODD OUT DAILY  | 10/0/2022     | Wedged       | October 00, 2022   | 30.49       | DDONIA22       |
|   | 25  | CRD_CU1_DAILY  | 10/3/2022     | vvednesday   | October 05, 2022   | 34.664      | PRGNI139       |
|   | 26  | CRD_CU1_DAILY  | 10/3/2022     | Wednesday    | October 05, 2022   | 32.666      | MOL0221        |
|   | 27  | CRD CU1 DAILY  | 10/3/2022     | Wednesday    | October 05, 2022   | 32.26       | DWS296         |
|   | 28  | CPD CUIL DAILY | 10/3/2022     | Wedneeday    | October 05, 2022   | 6 743       | BVCTS310       |
|   | 20  | CRD_CUT_DAILT  | 10/3/2022     | weunesuay    | OCIDER 05, 2022    | 0.743       | D1013319       |
|   | 29  | CRD_CU1_DAILY  | 10/3/2022     | Wednesday    | October 05, 2022   | 3.722       | BASRH228       |
|   | 30  | CRD_CU1_DAILY  | 10/4/2022     | Thursday     | October 06, 2022   | 9.975       | MARIN146       |
|   | 31  | CRD CU1 DAILY  | 10/4/2022     | Thursday     | October 06, 2022   | 40.7        | MAYAE220       |
|   | 22  | CDD CUIL DAILY | 10/4/2022     | Thursday     | October 06, 2022   | 22.16       | MOI 0221       |
|   | 32  | CRD_COT_DAILT  | 10/4/2022     | Thursday     | 00000000,2022      | 33.10       | MULU221        |
|   | 33  | CRD_CU1_DAILY  | 10/4/2022     | Inursday     | October 06, 2022   | 32.871      | DWS296         |
|   | 34  | CRD_CU1_DAILY  | 10/4/2022     | Thursday     | October 06, 2022   | 6.256       | BYCTS319       |
|   | 35  | CRD_CU1_DAILY  | 10/4/2022     | Thursday     | October 06, 2022   | 12,402      | ISTHM324PASR0  |
|   | 26  | CRD CUIL DAILY | 10/4/2022     | Thursday     | October 06, 2022   | 5.062       | DASOTC272      |
|   | 07  | CRD_COT_DAILT  | 10/4/2022     | Thursday     | October 00, 2022   | 3.003       | PAGOTOZIG      |
|   | 37  | CRD_CU1_DAILY  | 10/4/2022     | Inursday     | October 06, 2022   | 34.663      | PRGNI139       |
|   | 38  | CRD_CU1_DAILY  | 10/4/2022     | Thursday     | October 06, 2022   | 3.433       | BASRH228       |
|   | 39  | CRD CU1 DAILY  | 10/5/2022     | Monday       | October 10, 2022   | 35.595      | DWS296         |
|   | 40  | CPD CUI1 DAILY | 10/5/2022     | Monday       | October 10, 2022   | 0.480       | ISTHM324DASD   |
|   | 40  | CRD_CUT_DAILY  | 10/3/2022     | Monuay       | October 10, 2022   | 0.000       | ISTIMS24PASK   |
|   | 41  | CRD_CU1_DAILY  | 10/5/2022     | Monday       | October 10, 2022   | 9.366       | MARIN146       |
|   | 42  | CRD_CU1_DAILY  | 10/5/2022     | Monday       | October 10, 2022   | 33.73       | PRGNI139       |
|   | 43  | CRD CU1 DAILY  | 10/5/2022     | Monday       | October 10, 2022   | 38,433      | MAYAE220       |
|   | 44  | CPD CUI1 DAILY | 10/5/2022     | Monday       | October 10, 2022   | 3 415       | PASOTC273      |
|   |     | CRD_COT_DAILT  | 10/5/2022     | monuay       | 000000110,2022     | 0.410       | PASOTO213      |
|   | 45  | CRD_CU1_DAILY  | 10/5/2022     | Monday       | October 10, 2022   | 57.833      | MULU221        |
|   | 46  | CRD_CU1_DAILY  | 10/5/2022     | Monday       | October 10, 2022   | 2.884       | BASRH228       |
| 1 | 47  | CRD CU1 DAILY  | 10/5/2022     | Monday       | October 10, 2022   | 6,182       | BYCTS319       |
|   | 48  | CRD CILL DARY  | 10/6/2022     | Monday       | October 10, 2022   | 47 242      | DW/\$296       |
|   | 40  | CDD CUA DAILY  | 10/0/2022     | Mand         | October 10, 2022   | 7.405       | BVCTC240       |
|   | 49  | CRD_CU1_DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 7.465       | 01015319       |
|   | 50  | CRD_CU1_DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 2.867       | PASOTC273      |
|   | 51  | CRD_CU1 DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 27.697      | MAYAE220       |
|   | 52  | CRD CUI DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 40.614      | MOI 0221       |
|   | 52  | CDD CUA DATEY  | 40/0/2022     | Maaday       | Ostabas 40, 2022   | 5 000       | ICTUM224D4 CD4 |
|   | 53  | CRU_CUT_DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 5.228       | ISTEMSZ4PASR   |
|   | 54  | CRD_CU1_DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 11.263      | PMIAC14PASRC   |
|   | 55  | CRD_CU1 DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 6.988       | MARIN146       |
|   | 56  | CRD CU1 DAILY  | 10/6/2022     | Monday       | October 10, 2022   | 26 758      | PRGNI139       |
|   | 67  | CDD CUA DATEY  | 40/7/2022     | Manday       | October 10, 2022   | 0.040       | ICTUM224DA CD4 |
|   | 57  | CRD_CU1_DAILY  | 10///2022     | monday       | October 10, 2022   | 0.018       | IST MM324PASR  |
|   | 58  | CRD_CU1_DAILY  | 10/7/2022     | Monday       | , Uctober 10, 2022 | 6.267       | MARIN146       |
|   | 59  | CRD_CU1 DAILY  | 10/7/2022     | Monday       | October 10, 2022   | 6.834       | BYCTS319       |
|   | 60  | CRD CU1 DAILY  | 10/7/2022     | Monday       | October 10 2022    | 2 231       | BASRH228       |
|   | 61  | CPD CUI1 DAILY | 10/7/2022     | Monday       | October 10, 2022   | 25.044      | DDCNI130       |
|   | 01  | CRD_CUT_DAILY  | 10/1/2022     | monday       | October 10, 2022   | 25.041      | PRONIT39       |
|   | 62  | CRD_CU1_DAILY  | 10/7/2022     | Monday       | October 10, 2022   | 3.855       | STONE280       |
|   | 63  | CRD_CU1_DAILY  | 10/7/2022     | Monday       | October 10, 2022   | 35.272      | MOL0221        |
|   | 64  | CRD CU1 DAILY  | 10/7/2022     | Monday       | October 10, 2022   | 8,744       | PMIAC14PASRC   |
|   | 65  | CPD CUI1 DAILY | 10/7/2022     | Monday       | October 10, 2022   | 33 207      | MAYAE220       |
|   | 03  | ORD_CUI_DAILY  | 10/7/2022     | Monday       | October 10, 2022   | 33.207      | mATAE220       |
|   | 66  | CRD_CU1_DAILY  | 10///2022     | Monday       | October 10, 2022   | 47.718      | DW5296         |
|   | 67  | CRD_CU1_DAILY  | 10/7/2022     | Monday       | October 10, 2022   | 2.461       | PASOTC273      |
|   | 68  | CRD CU1 DAILY  | 10/8/2022     | Monday       | October 10. 2022   | 6.122       | STONE280       |
|   | -   |                | 10.00000      |              | 0 1 1 40 0000      | 7 700       |                |
|   |     | 4 1            | CalcData      | RIAdata      | AssavBlond         | Sheet1      | A              |
|   |     |                | Culturata     | 111711010100 | Assaybienu         | Uneeri      | (1)            |



#### Creating Assays from Scheduler's Plant Data and Scheduler's Blend

Τ

s.

19-Oct-22 XXX CU1 19Oct22

21-Oct-22 XXX\_CU1\_21Oct22 22-Oct-22 XXX\_CU1\_22Oct22

23-Oct-22 XXX\_CU1\_23Oct22

24-Oct-22 XXX\_CU1\_24Oct22

25-Oct-22 XXX\_CU1\_25Oct22

26-Oct-22 XXX\_CU1\_26Oct22

27-Oct-22 XXX\_CU1\_27Oct22

28-Oct-22 XXX\_CU1\_28Oct22

29-Oct-22 XXX\_CU1\_29Oct22

30-Oct-22 XXX\_CU1\_30Oct22

31-Oct-22 XXX\_CU1\_31Oct22

20-Oct-22

178.95

178.86

178.12

177.99

177.86

177.21

179.01

175.61

179.00

177.99

178

17

#### If CDate(Sheets("RIAdata").Cells(cell.Row + 1, 2)) > CDate(cell.Value) \_ Or CStr(Sheets("RIAdata").Cells(cell.Row + 1, 2)) = "" Then Sheets("AssayBlend").Range("D12").Value = Format(cell.Value, "d New Open Save Paste Export Crude Graphs Sheets("AssayBlend").Calculate 📑 Export 🔻 User crudes V Filter: to Excel 💮 Convert to Profiles ڬ Regenerate Summary ' Error checking for valid crude names Document Clipboard View Database Graphing For Each crude In Sheets ("AssayBlend").Range ("C18:C50") If crude = "" Then Navigator д REC? 1: CVX Ass... Reference Traded Crude Nearn... API Sul(%w) Assav Name Exit For Database Unknown XXX ADJ Daily Crude Blend CU1 01Oct22 1. 22.78 Else <u>الا</u> Unknown XXX ADJ Daily Crude Blend CU1 02Oct22 1.. 'result = GenInfoVal(crude.Value, "name") Unknown XXX ADJ Daily Crude Blend CU1 03Oct22 1.. 22.60 result = assaygetcutvalue(crude.Value, "API, none", "IBP AssayWorkup 0 XXX CU1 04Oct22 Unknown XXX ADJ Daily Crude Blend CU1 04Oct22 1.. If InStr(result, "Error") > 0 Then AssayWorkup Assay V. inValidCrudeList = result & ":" & inValidCrudeList WORKUP Unknown XXX ADJ Daily Crude Blend CU1 07Oct22 1... XXX\_CU1\_05Oct22 XXX AD1 Daily Crude Blend CL11 05Oct22 1. 22.41 isValid = False Unknown i Information XXX ADJ Daily Crude Blend CU1 06Oct22 1.. End If XXX\_CU1\_06Oct22 Unknown 22.60 2.09 🛃 Streams End If Flowsheet Unknown XXX ADJ Daily Crude Blend CU1 09Oct22 1.. Next XXX CU1 08Oct22 Unknown XXX ADJ Daily Crude Blend CU1 08Oct22 1.. Basis If isValid Then Unknown XXX ADJ Daily Crude Blend CU1 11Oct22 1... Constraints Crudes Blend Weight .Value, Unknown XXX ADJ Daily Crude Blend CU1 10Oct22 1... 23.41 2.26 Diagnostics XXX ADJ Daily Crude Blend CU1 12Oct22 1.. btal vol Unknown 23.78 ige ("D12 XXX\_CU1\_14Oct22 Unknown XXX AD1 Daily Crude Blend CU1 14Oct22 1. 22.45 📲 📲 Output Grid 1-Oct-22 XXX CU1 01Oct22 179.17002 V XXX ADJ Daily Crude Blend CU1 13Oct22 1... 23.29 Unknown Measurements 3("Assay XXX\_CU1\_15Oct22 Unknown XXX ADJ Daily Crude Blend CU1 15Oct22 1.. 2-Oct-22 XXX\_CU1\_02Oct22 178.47715 GC GC XXX CU1 16Oct22 Unknown XXX ADJ Daily Crude Blend CU1 16Oct22 1.. 3-Oct-22 XXX CU1 03Oct22 179.38501 III Distillation Unknown XXX ADJ Daily Crude Blend CU1 17Oct22 1. 4-Oct-22 XXX\_CU1\_04Oct22 178,74345 XXX CU1 18Oct22 Unknown XXX ADJ Daily Crude Blend CU1 18Oct22 1.. 21.79 XXX\_CU1\_19Oct22 Unknown XXX ADJ Daily Crude Blend CU1 19Oct22 1.. 21.56 5-Oct-22 XXX CU1 05Oct22 176.92702 XXX ADJ Daily Crude Blend CU1 21Oct22 1... 2.28 Unknown 21.49 6-Oct-22 XXX\_CU1\_06Oct22 176.12084 XXX ADJ Daily Crude Blend CU1 22Oct22 1.. 2.28 Unknown 21.46 Unknown XXX ADJ Daily Crude Blend CU1 20Oct22 1.. 21.60 2.04 7-Oct-22 XXX\_CU1\_07Oct22 178.45011 XXX ADJ Daily Crude Blend CU1 23Oct22 1... Unknown 21.79 8-Oct-22 XXX\_CU1\_08Oct22 177.3745 XXX ADJ Daily Crude Blend CU1 25Oct22 1.. Unknown 20.80 9-Oct-22 XXX CU1 09Oct22 178,90937 XXX CU1 24Oct22 Unknown XXX ADJ Daily Crude Blend CU1 24Oct22 1... 21.78 Unknown XXX ADJ Daily Crude Blend CU1 26Oct22 1.. 20.36 10-Oct-22 XXX\_CU1\_10Oct22 173.01695 XXX ADJ Daily Crude Blend CU1 27Oct22 1... 20.30 Unknown 11-Oct-22 XXX\_CU1\_110ct22 178.46899 XXX\_CU1\_28Oct22 XXX ADJ Daily Crude Blend CU1 28Oct22 1... Unknown XXX\_CU1\_29Oct22 Unknown XXX AD1 Daily Crude Blend CU1 29Oct22 1. 21.61 12-Oct-22 XXX CU1 12Oct22 178.46998 XXX ADJ Daily Crude Blend CU1 31Oct22 1.. Unknown 13-Oct-22 XXX CU1 13Oct22 174.57 XXX\_CU1\_30Oct22 XXX ADJ Daily Crude Blend CU1 30Oct22 179 21.80 2.41 Unknown 14-Oct-22 XXX CU1 14Oct22 175.68 15-Oct-22 XXX CU1 15Oct22 179.01 16-Oct-22 XXX CU1 16Oct22 176.28 17-Oct-22 XXX CU1 17Oct22 178.98 18-Oct-22 XXX CU1 18Oct22 178.91

### Assay for each day, compare to PI data for Backcast

| -                     |              |                           |                |                |                |                   |                |             |                     | <u> </u>   | · · · · ·         | m             |                   | , °                  |                    |                   | D                | \$                 |                   | 0                | Y                      | w              | ^              |                | -        |
|-----------------------|--------------|---------------------------|----------------|----------------|----------------|-------------------|----------------|-------------|---------------------|------------|-------------------|---------------|-------------------|----------------------|--------------------|-------------------|------------------|--------------------|-------------------|------------------|------------------------|----------------|----------------|----------------|----------|
| 1 Flowsheet - Advance | ed MultiFeed | =AssayGe                  | tFlowsheetC    | CutMatrizM     | ultiFeed(Flo   | ow Basis, F       | eeds Range.    | Property C  | ode Range, Stream   | n Range, 7 | owers Range, Mixi | Show I        | Help Is F         | ange ]               |                    |                   |                  |                    |                   |                  |                        |                |                |                |          |
| 3                     |              |                           |                |                |                |                   |                |             |                     |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  |                        |                |                |                |          |
| 4 SPG 15 555556C      | CRD_FD2      | LPG2<br>0.5398            | LSR2<br>0.7070 | HSR2<br>0.7786 | JET2<br>0.8014 | Diesel2<br>0.8496 | 4SC2<br>0.8991 | Atm Resid   | ARES2 0.989         | SLP-6125   | 5SC2a             | 7SC2<br>0.907 | VacResid<br>8 100 | VACR2_STR0<br>1 1003 | VACR2_VDU<br>10031 | VAC2_IN<br>0.9588 | VDU2_FD<br>1000F | 1SC_VDUa<br>0.9060 | 2SC_VDU<br>0.9403 | CKR_FD2<br>10461 | CRD_FD1<br>0.9193      | GAS1<br>0.5606 | LPG1<br>0.6319 | LSR1<br>0.7352 | HSR1 2   |
| 6 MCRT,%              | 8.06         | 0.00                      | 0.00           | 0.00           | 0.00           | 0.00              | 0.03           | 17.60       | 14.3                | 0.0        | 0 0.0             | 0.04          | 4 16.0            | 16.04                | 16.04              | 8.94              | 15.65            | 0.07               | 0.60              | 24.39            | 8.43                   | 0.00           | 0.00           | 0.00           | 0.00     |
| 7 SUL,%               | 2.82         | 2 0.00                    | 0.02           | 0.10           | 0.34           | 1.45              | 3 2.53         | 4.84        | 4.4                 | 1 1.0      | 6 1.6             | 1 2.70        | 0 4.6             | 5 4.65               | 4.65               | 42.23             | 4.49             | 2.39               | 3.13              | 5.41             | 2.12                   | 0.00           | 0.01           | 0.06           | 0.19     |
| 9 VAN,ppm             | 60.0         | 1 0.00                    | 0.00           | 0.00           | 0.00           | 0.00              | 0.02           | 131.16      | 106.5               | 3 0.0      | 0 0.0             | 0.0           | 5 119.5           | 119.5                | 119.52             | 95.24             | 118.19           | 0.03               | 0.52              | 185.94           | 109.68                 | 0.00           | 0.00           | 0.00           | 0.00     |
| 10 VIS,135C,eSt       | 2.50         | 0.23                      | 0.31           | 0.43           | 0.54           | 0.95              | 5 2.01         | 105.28      | 34.9                | 3 0.7      | 6 0.9<br>5 3.2    | 9 2.3         | 1 62.9            | 62.9                 | 62.93              | 7.53              | 54.25            | 2.17               | 5.37              | 873.13<br>53.04  | 3.69                   | 0.24           | 0.26           | 0.32           | 0.40     |
| 12 FLOWW,t/d          | 26131.45     | 256.94                    | 3714.64        | 378.89         | 2339.43        | 3808.28           | 3677.74        | 11955.53    | 14713.8             | 218.3      | 8 439.2           | 6 1154.6      | 1 13119.9         | 7 0.00               | 13119.97           | 761.78            | 13881.75         | 1528.59            | 3536.96           | 8816.21          | 26111.30               | 185.35         | 265.05         | 2231.57        | 505.25   |
| 13 PEM,250,/10        | 767430       |                           |                |                | 712341108      | 212783167         | 7 28073430     | 615         | 459                 | 34727130   | 5 19134033        | 5 2073735     | 1 153             | 1534                 | 1534               | 41462             | 1835             | 14453350           | 1258501           | 28               | 559651                 | ******         | 1916167526     | 1456748353     |          |
| 14                    |              |                           |                |                |                |                   |                |             |                     |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  |                        |                |                |                |          |
| 15                    |              |                           |                |                |                |                   |                |             |                     |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  |                        |                |                |                |          |
| 16 Towers             | Pipes        | ECP                       | StrippingFl    | l Rectifying   | Pressure       | CutPoint,F        | -              | Misers      | Inputs              | Output     |                   | Splitters     | s Input           | Outputs              | Ratio              |                   |                  |                    |                   | Feed             | Assa                   | Blend          |                | EN,15C,g/c     | PER.25   |
| 17 CDU2               | LPG2         | F                         |                |                | atm            | 31.1              |                | Mizer (6)   | 4SCspl              | ARES2      |                   | 4SC_spl       | 4SC2              | 4SC2net              | 0.25               |                   |                  | Feeds              | Feed rate         | rate UoM         | Beference              | Batio          | Basis VIV      | IBP,FBP,C      | 55,FBP,C |
| 18 CRD_FD2            | LSB2<br>HSB2 | 31.09999992<br>359.279804 | 4.34           | 4.32           |                | 334.2             |                |             | Atm Resid2          |            |                   |               |                   | 4SCspl               | 0.75               |                   |                  | CRD2               | 185               | kbbi/d           | ABA277BP-B<br>NPOES202 | 31.5           | V              | 0.88844244     | 23.0001  |
| 20                    | JET2         | 375.135282                | 2.16           | 5.58           |                | 469.9             |                |             |                     |            |                   | VAC_SP        | YacResid          | VACR2_STR            | 0                  |                   |                  |                    |                   |                  | ORNTE244               | 0              |                | 0.90717354     | 0.08537  |
| 21                    | Diesel2      | 503.554704                | 1.5            | 6.39           | 1              | 643.4             |                | Mizer (8)   | VACR2_VDU2          | VDU2_FD    |                   |               |                   | VACR2_VDU2           | 1                  |                   |                  |                    |                   |                  |                        |                |                |                |          |
| 22                    | 4SC2         | 683.094437                | 1.36           | 5.3            |                | 830.1             |                |             | VAC2_IN             |            |                   |               |                   |                      |                    |                   |                  | CRD_FD1            | 178.74345         | kbbl/d           | XXX_CU1_010            | 0              | v              | 0.91668927     | 2.34457  |
| 23                    | Atm Resid2   | 821.178759                | 3.17           | 1.94           |                |                   |                |             | ATB VDU2            |            |                   | PSD AT        | ATB               | ATB CDU2             | 0                  |                   |                  | _                  |                   |                  | XXX_CU1_020et2         | 0              |                | 0.91697975     | 2.11221  |
| 24                    |              |                           |                |                |                | 1                 |                |             |                     |            |                   |               |                   | ATB VDU2             | 0                  |                   |                  |                    |                   |                  | XXX_CU1_03Oc           | 0              |                | 0.91777477     | 1.57947  |
| 25 VAC2               | SI P-6125    | F                         |                |                | atm            | 1                 |                | Mizer (9)   | SLOP                | ISC VOIL   | a                 |               |                   | ATB VAC              | 0                  |                   |                  |                    |                   |                  | XXX CUI 04Oct          | 178 743        |                | 0.91883165     | 151796   |
| 26 ABES2              | 5502         | 600                       | 194            | 4.53           |                | 6281              |                |             | ISC YOU             |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX CUI 070et          | 0              |                | 0.91527227     | 2 7021   |
| 07                    | 7902         | CEC 542215                | 155            | 4.10           |                | 747.0             |                |             | 100_100             |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX CUI 050et          | 0              |                | 0.01021221     | 100041   |
| 20                    | V-D-sid      | 700.070210                | 0.04           | 1.10           |                | 141.0             |                | Mar. (10)   | ICC VDU-            | tacc you   |                   |               | _                 | _                    | _                  |                   |                  |                    |                   |                  | YYY CULOCO             |                |                | 0.01777000     | 0.70054  |
| 20                    | Vachesiu     | 133.010110                | 0.34           | 1.00           |                |                   |                | Mizer (10)  |                     | 1250_400   | 1 A               | \ssa          | av fo             | r eacl               | ח dav              |                   |                  |                    |                   |                  |                        | 0              |                | 0.31/1/033     | 2.72304  |
| 28                    |              |                           |                |                |                | -                 |                |             | 250_100             |            | <u>+ '</u>        |               | .,                |                      | 1 0 0 3            |                   |                  |                    |                   |                  | XXX_C0[_090ct          |                |                | 0.91227361     | 4.6723   |
| 30                    |              | _                         |                |                |                | -                 |                |             |                     |            | +1 F              | Back          | cas               | t/Look               | back               |                   | -                |                    |                   |                  | XXX_C01_08Uct          | 0              |                | 0.91457949     | 3.08473  |
| 31 ¥UU2               | SLUP         | C                         |                |                | atm            | -                 |                | Mizer (11)  | CKR_FU2             | CKR_FD     | 11 -              |               |                   |                      |                    |                   | DeepCutHsd       | 1                  |                   |                  | XXX_CU1_11Uet2         | 0              |                | 0.9113068      | 4.70722  |
| 32 ¥DU2_FD            | ISC_VDU      | 405                       | 0.71           | 0.63           | 0.01           | 809.8             |                |             | DeepCutRsd          |            | SI                |               |                   |                      |                    |                   | 1.032            |                    |                   |                  | XXX_CU1_10Oct2         | 0              |                | 0.91298915     | 4.47112  |
| 33                    | 2SC_VDU      | 414.1                     | 1.12           | 0.75           | 0.01           | 1016.6            | -              |             |                     |            | M                 |               |                   | -                    |                    |                   | 22.04            |                    |                   |                  | XXX_CU1_12Oct2         | 0              |                | 0.91079871     | 4.75618  |
| 34                    | CKR_FD2      | 546.5                     | 100            | 100            | 0.01           | 1                 |                | Mizer       | LVG01               | LH¥GO      | SUL,%             | 2.5           | 7 1.4             | 3.57                 | 0.31               | 1.44              | 3.47             |                    |                   |                  | XXX_CU1_14Oct2         | 0              |                | 0.91865376     | 4.0206   |
| 35                    |              |                           |                |                |                | -                 |                |             | H¥GO1               |            | NIK.ppm           | 51.93         | 3 0.7             | 99.00                | 0.42               | 0.47              | 92.7             |                    |                   |                  | XXX_CU1_13Oct2         | 0              |                | 0.91370034     | 3.14398  |
| 36 CDU1               | GAS1         | с                         |                |                | atm            | -                 |                |             |                     |            | VAN,ppm           | 161.23        | 3 2.5             | 3 307.40             | 1.04               | 1.63              | 287.73           |                    |                   |                  | XXX_CU1_15Oct2         | 0              |                | 0.91855906     | 4.0744   |
| 37 CRD_FD1            | LPG1         | 15.06                     | 4.70           | 4.7            | 1              | 1                 |                | Mizer (3)   | 5SC1                | 58SC1      | VIS,135C,cSt      | 48.04         | 4 4.8             | 3 2798.75            | 4.01               | 4.45              | 1610.65          |                    |                   |                  | XXX_CU1_16Oet2         | 0              |                | 0.92180262     | 4.37137  |
| 38                    | LSR1         | 45.36                     | 4.53           | 4.68           | 1              | 4                 |                |             | 8SC1                |            | FLOWV,kbbi/d      | 114.1         | 0 57.9            | 56.2                 | 16.47              | 53.55             | 60.55            |                    |                   |                  | XXX_CU1_17Oot2         | 0              |                | 0.92241398     | 4.71821  |
| 39                    | HSR1         | 160.91                    | 2.80           | 4.79           | 1              | L.                |                |             |                     |            | FLOVV,t/d         | 17790.8       | 1 8529.2          | 9261.56              | 2297.35            | 7865.40           | 9925.42          |                    |                   |                  | XXX_CU1_18Oot4         | 0              |                | 0.92260957     | 4.90866  |
| 40                    | 2SC1         | 179.12                    | 2.15           | 4.63           |                |                   |                | Mizer (7)   | SLP-6125            | 5SC2a      | _                 |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX_CU1_19Oot4         | 0              |                | 0.92399017     | 4.9534   |
| 41                    | 3SC1         | 199.92                    | 2.08           | 2.94           |                |                   |                |             | 5SC2                |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX_CU1_21Oot          | 0              |                | 0.92439694     | 2.62315  |
| 42                    | ATMDSL1      | 289.42                    | 2.84           | 3.39           |                | 1                 |                |             |                     |            |                   | VAC1          | H¥GO1             | DeepCutRsd           |                    |                   |                  |                    |                   |                  | XXX_CU1_22Oot          | 0              |                | 0.92457851     | 2.74406  |
| 43                    | 5SC1         | 322.31                    | 1.58           | 1.38           |                | 1                 |                | VDU1_MIX    | ARES1               | VAC1_FD    | SPG,15.6C,none    | 1.005         | 5 0.95            | 1.04                 | SB                 |                   |                  |                    |                   |                  | XXX_CU1_20Oot          | 0              |                | 0.92375923     | 6.37987  |
| 44                    | ARES1        | 308.03                    | 1.57           | 1.08           |                |                   |                |             | ATB_VDU1            |            | FLOWV, kbbl/d     | 88.8          | 0 38.9            | 49.8                 | SB                 |                   |                  |                    |                   |                  | XXX_CU1_23Oot          | 0              |                | 0.92259402     | 3.06094  |
| 45                    |              |                           |                |                |                |                   |                |             | _                   |            | SPG,15.6C,none    | 1.01          | 0 0.95            | 1.042                | PD                 |                   |                  |                    |                   |                  | XXX CU1 25Oct          | 0              |                | 0.92862698     | 3.39847  |
| 46 VAC1               | 6SC1         | с                         |                |                | atm            | 646.0             |                | CRD2 MIX    | CBD2                | CRD FD2    | FLOWV.kbbi/d      | 96.44         | 4 34.8            | 61.5                 | PD                 |                   |                  |                    |                   |                  | XXX CUI 24Oct          | 0              |                | 0.92265799     | 3.44913  |
| T VAC1 FD             | 8SC1         | 358.23                    | 1.53           | 3.56           | 0.10           | 744.6             |                |             | ATB CDU2            |            | 1                 |               | 7.04              |                      |                    |                   |                  |                    |                   |                  | XXX CUI 26Oct          | 0              |                | 0.93131236     | 3.0011   |
| 48                    | 1.VG01       | 429.06                    | 693            | 0.66           | 0.10           | 762.4             |                |             |                     |            | 1                 |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX CUL 270et          | 0              |                | 0.93168495     | 3 10424  |
| 49                    | VACIBES      | 411.00                    | 0.03           | 100            | 0.10           | 1                 |                | VDUATAN     | HYGOI               | VACIA      | 1                 |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX CIII 220-+         | 0              |                | 0.92635254     | 7 55432  |
| ***                   | TACINES      | 411.00                    | 0.77           | 1.20           | 9 0.10         | 9                 |                | VDOATalVitz | Dece Cart Dec       | TACIA      | 1                 |               |                   |                      |                    |                   |                  |                    |                   |                  | VVV CUL 2000           | 0              |                | 0.02000000     | 7.00402  |
|                       |              |                           |                |                |                |                   |                |             | DeepcotHSd          |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  | AAA_CUL28Uct           |                |                | 0.3236618      | 7.13630  |
|                       | HVGOT        |                           |                |                | atm            | 1034.9            |                |             |                     |            | 1                 |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX_CU1_310ct2         | 0              |                | 0.92142292     | 6.87318  |
| 52 ¥DU1_FD<br>53      | DeepCutRsd   | 562.41                    | 1.53           | 1.76           | 0.01           | 4 (               | 1              | VDU1_MIX    | VACIRES<br>ATB VDU1 | VDU1_FD    | 1                 |               |                   |                      |                    |                   |                  |                    |                   |                  | XXX_CU1_300ct          | 0              |                | 0.92253547     | 7.3362   |
| 54 PASATB             | AtmGas       | c                         |                | 1              | atm            | 1                 |                |             |                     |            |                   |               |                   |                      |                    |                   |                  |                    |                   |                  |                        |                |                |                |          |

Chevron

Chevron

...and check the mass balance on your crude unit by comparing PD to SB. Check blend back density to feed density





Boiling Point (°F)

### Summary



- Create complex distillation models with unlimited oil injection, distillation and splitting
- On the fly column calibration with plant data to create ECP, Stripper and Rectifying Indexes
- Optimization using Solver with Asphalt properties and flow rate as the objective function
- Other use cases include:
  - Recut any stream to the Assay database
  - Use of the SwingCut Calculator on any pair of streams for LP linearization
  - Full database functions including Blend Analysis, Blending, and Measured Values and Assay Workup w Flowsheet
  - Calculate Overheads from each section for PROII initialization





#### Challenge

 How to model and simulate complex crude oil routings thru multiple columns and splitters and get the optimal product mix for asphalt feed.



#### Solution

 Aveva's new SDK tools allow for unlimited complexity in stream topology whilst maintaining the integrity of Spiral Assay and its fractionation technology.

#### Benefits

- Using legacy tools would've meant at least 5 weeks to set up the fractionation paths and hand blending formulae in Excel. This Asphalt model was built in half a day with another 2 days spend collecting data for column calibration with plant data.
- 5 weeks vs 3 days

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.