OCTOBER 24, 2023

Building HMI and IIoT solutions with Linux devices

AVEVA Edge, IoT View (Linux)

Scott A Kortier – Product Manager, Operations Control

Scott A Kortier

Product Manager – operations control

AVEVA

scott.kortier@aveva.com

Industrial Internet of Things (IIoT) / Industry 4.0

AVEVA Edge as an IoT Gateway and/or HMI/SCADA node

Cloud Analytics and Mobile Access

analytics, consolidation, artificial intelligence (AI), machine learning (ML), remote management/deployment, remote notifications and monitoring

Edge devices

data acquisition, data manipulation (aggregations, filtering, contextualization, normalization), link with the cloud, local maintenance, local operation

Instrumentation and Controllers

operational real-time control, raw data measurements

World-leading Linux HMI

Challenge

 Many geographically disperse, low end "edge" devices needed to collect, filter, and historize data

Solution

 AVEVA Edge IoT View (Linux) used to communicate, filter and log data

Benefits

- Small Footprint, lower cost hardware
- 18 native drivers on Linux
 - Communicate to any required device
- OPC UA included supporting global standards
- Python scripting for filtering
- Keep required data, Local, SQL, Historian, Insight

Interoperability

OT+IT native integration

Native built-in drivers (connectors)

Cloud and IT Integration

Email, data, and page interface from mobile devices

Plant Floor Integration

Schneider-Electric.

OMRON, GE,

Allen Bradley, Siemens,

Modbus, Profibus,

DeviceNet, Beckhoff, MQTT

Sparkplug B, OPC UA/DA/XML,

and many others...

Mobile Access and Web Solution

Access to the system from anywhere using a single browser

TCP/IP **OPC Server**

Gateway

XML

ODBC/ADO

DDE

Client Stations

Redundancy Data Exchange in Real-Time Third-Party Systems Thin Clients

Protocols (Drivers)

OPC UA,

DA, .NET,

XML

Driver & Database

Open Architecture

System Integration Product Customization

Excel, Access, Oracle, MySQL, Sybase SQL Server, SQL Azure, AVEVA Historian, AVEVA Insight, AVEVA Integration Studio, OSI PI and many others...

What makes an HMI?

Hardware:

- General Industry: Proprietary, Windows, few Linux
- IoT View: X64 (x86) or ARM based

Communications

Drivers and OPC

Graphics

Meters, graphs, buttons, lights, trends, alarms

Functional

Scripting, Event, Logging (history)

Choosing the ideal AVEVA Edge runtime edition solution for your project

AVEVA Edge STUDIO is an integrated development environment (IDE), which allows you to design, develop, troubleshoot, and maintain SCADA/HMI/IoT applications running on premise edge and deploy them into different platforms (operating systems).

You can use the same development environment (AVEVA Edge STUDIO), on Windows, to create all projects and run each project with the runtime edition most suitable for the technical and commercial constraints of each platform: AVEVA Edge SCADA for SCADA projects running on Windows-based stations; AVEVA Edge Embedded HMI for full featured HMIs running on Industrial Panels with Windows IoT Enterprise LTSB/LTSC; and AVEVA Edge IoT View for IoT edge devices or local HMI solutions using Linux. This document is valid for AVEVA Edge 2023.

Platforms		AVEVA Edge Runtime Editions		
		SCADA	Embedded HMI	IoT View
Operating system	Windows Server 2022	Supported	Not supported	Not supported
	Windows Server 2019	Supported	Not supported	Not supported
	Windows Server 2016 (1)	Supported	Not supported	Not supported
	Windows 11	Supported	Not supported	Not supported
	Windows 10 (4)	Supported	Not supported	Not supported
	Windows 10 IoT Enterprise (LTSC/LTSB) [2]	Supported	Supported	Not supported
	Linux (x86/arm) 14	Not supported	Not supported	Supported
System requirements	Minimum free storage memory needed	4GB	128MB	75MB
	Minimum free RAM memory needed	1GB	64MB	32MB

What makes an IIoT device?

The data you need, where you need it

- At the "Edge", close to where the data is generated
- Reduce latency, improve network traffic
- Raw data acquisition, without normalizing
- Data manipulation (aggregations, filtering, contextualization, normalization)
- Data Historization (with store-and-forward)
 - Local (Disconnected)
 - SQL Database
 - Historian (On Prem or Insight)

IIoT solution – collect data and historize for "actionable insights"

Steps to build a Linux-based HMI

- Install and configure
 - Install IoT View on Device (follow documentation)
 - 2. Configure Project
 - 3. Configure Tags
 - 4. Configure Graphics
 - 5. Communications Modbus (but could be MQTT or OPC UA)
 - 6. Download and test (Quick Check)
- 2. Configure Logging
 - Local Logging (HST/CSV)
 - 2. Configure Insight
 - 3. Download, Run (Quick Check)
- 3. Add Python script
- 4. Download, Run

(optional)

Summary

- Benefits, pain points
 - Use on geographically disperse systems, wind, O&G, utilities, infrastructure
 - Ideal solution coupled with low bandwidth connections
 - Ideal solution for low cost or horsepower devices
 - Can be "headless" (no display)
 - Use on Linux based networking devices for a "no additional HW cost" solution
 - Shadow Sensing or Parallel I/O
 - Monitor status without touching machine PLC
 - Regulatory reporting
- Solution for AVEVA products
 - Use AVEVA Edge IoT View to complement other products as a complete solution

Questions?

Please wait for the microphone. State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

Thank you!

AVEVA

This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.

- in linkedin.com/company/aveva
- @avevagroup

ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world's most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com

