OCTOBER 25, 2023

Lighthouse Project

BIOSNA PHARMA Ir J.F. van de Laar, MSc

Lighthouse Project

"Implementation of a cloud based real-time Data Hub to acquire, visualize and analyze process- and analytical data from multiple sites and equipment for an end-to-end continuous biotech manufacturing process for biosimilars."

25 October 2023

Biosana Pharma

Store See Shape Share

AVEVA Data Hub™

SVIECLEVS

Ir J.F. van de Laar, MSc

Making **biologics affordable** and accessible for all patients

Biosana

Biosana Pharma

NDC 50242-040-62

Genentech

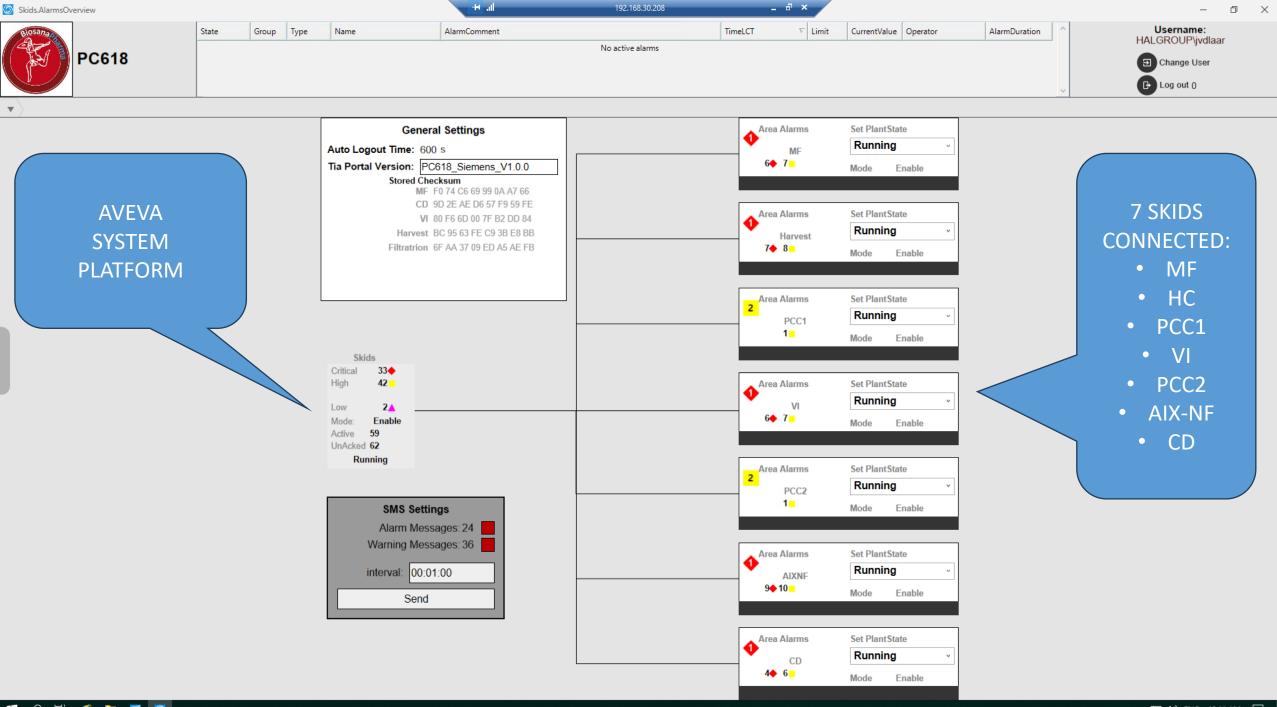
SINGLE-DOSE VIA

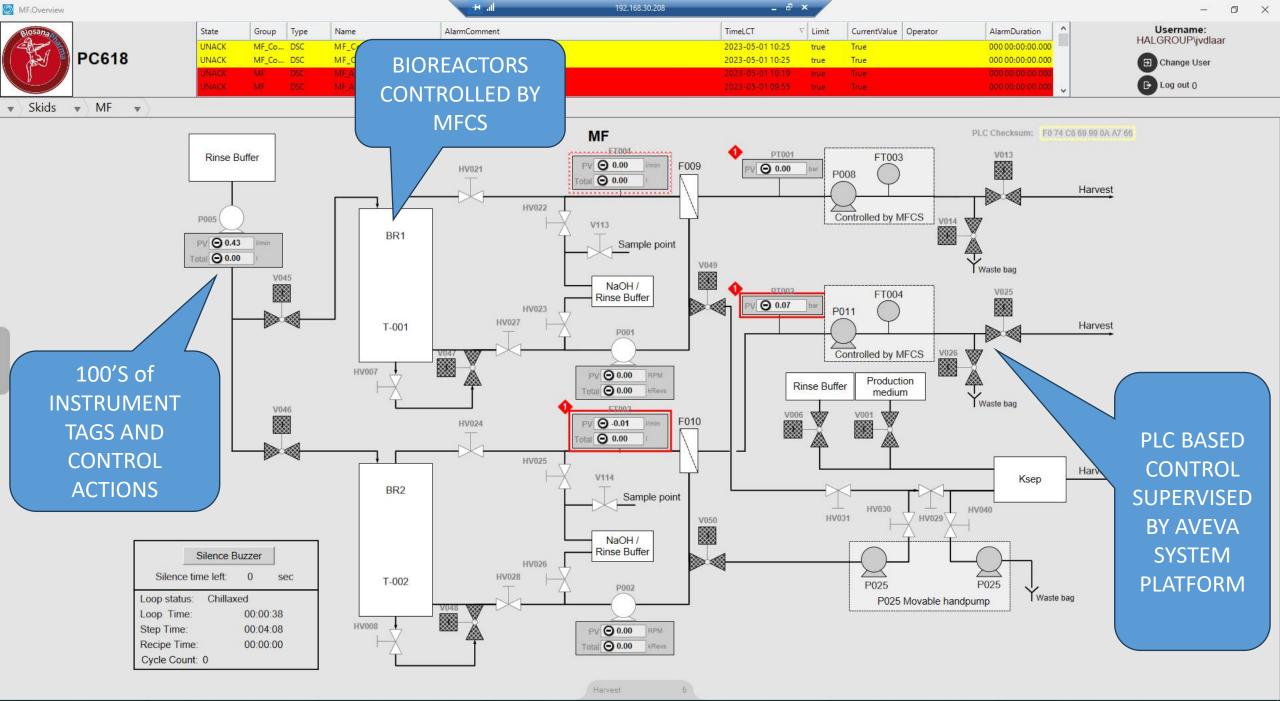
150 mg

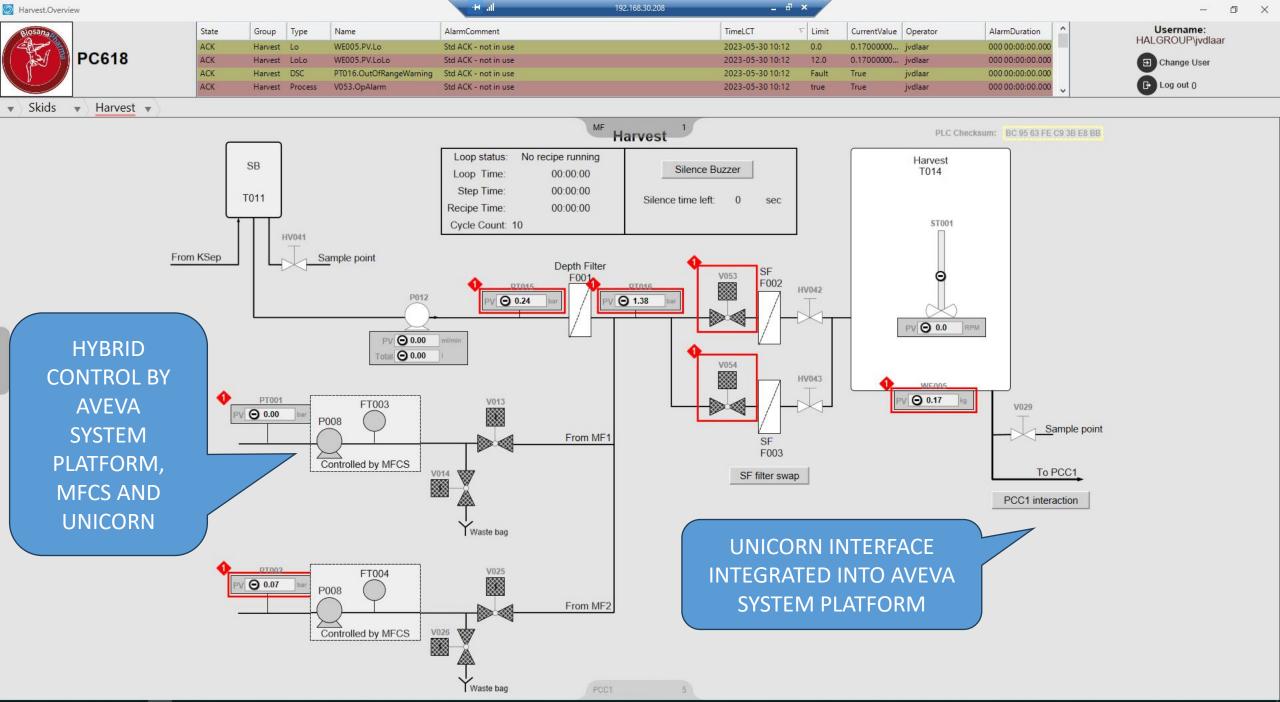
KEEP REFRIGERATED. DO NOT FREEZI

UNOVARTIS

- Monoclonal antibodies and biosimilars lead candidate: Omalizumab \rightarrow
- Successful in phase I clinical studies and analytical bio similarity
- First continuous end-to-end manufacturing platform (Mycenax, 2018)


Project & 3C process introduction

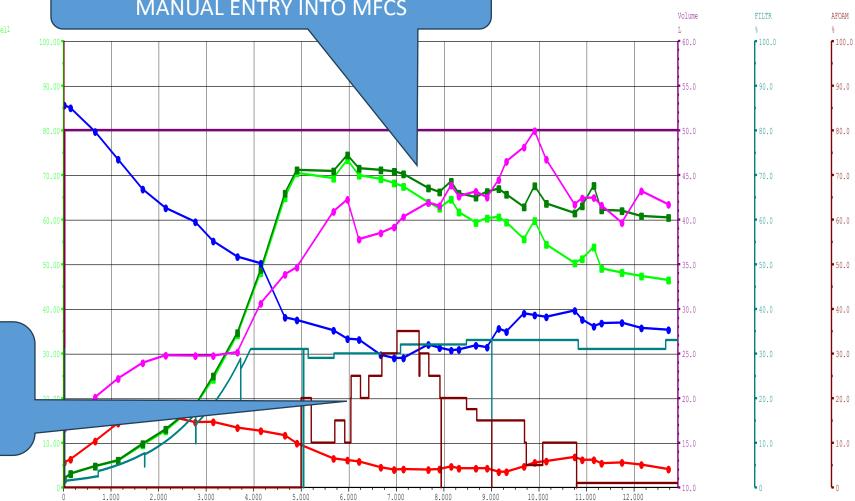

 Development of a continuous manufacturing platform for our lead mAb product: a biosimilar to Omalizumab Xolair[®]



🗄 🔎 🛱 🧀 🧕 🔘

📕 🔎 🛱 🏉 🗮 🖉 🎯

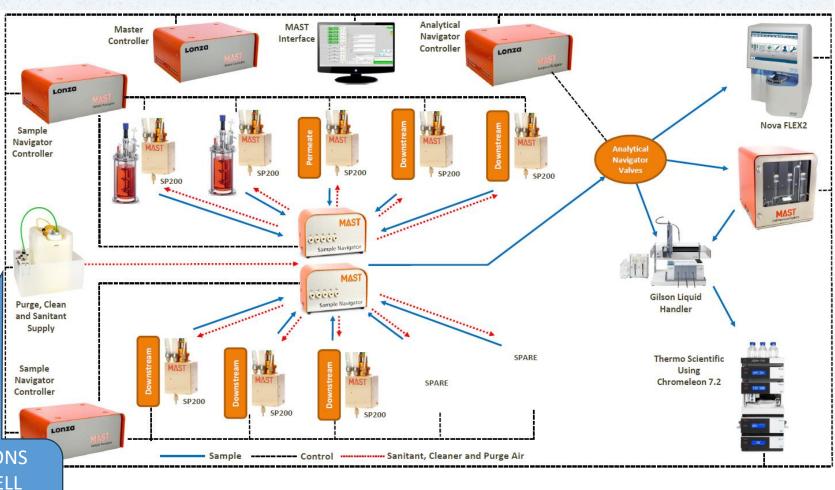
🕂 🔎 🛱 🏉 🖉 🔘



STR Metabolic Parameters VCD, TCD, Glucose, Lactate, Ammonium, pH, Volume, Perfusion, Ble STR2 HX22-070B \$0053(Running) Selection :30-11-22 16:29:08 - 13-12-22 14:33:56

MEASUREMENTS AND CONTROL ACTIONS ACQUIRED BY MFCS

CTM1.4

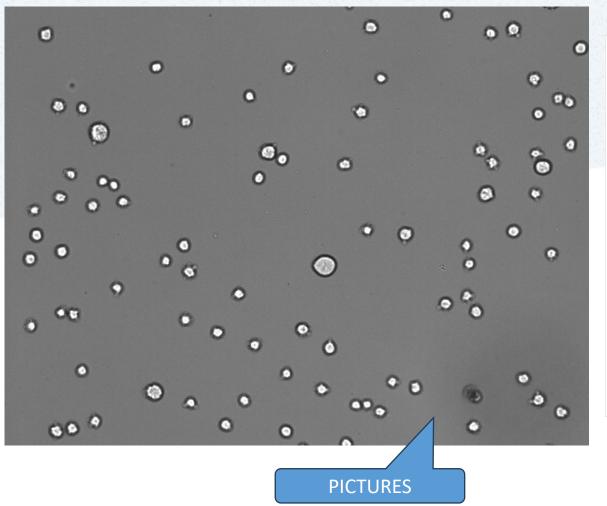


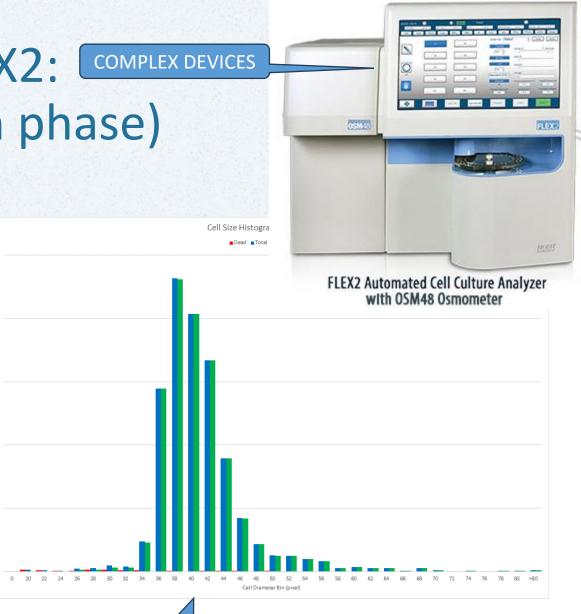
Batch Age [days] (GMT +1) W. Europe Daylight Time

In-process sampling and at-line testing

SEC

SP/MN	Sample point
STR1	Bioreactor 1
STR2	Bioreactor 2
SP1	Sample point for STR1
SP2	Sample point for STR2
SP3	MF Permeate
SP4	Clarified harvest
SP6	Acidification bag(for ProtA elute)
MN1	kSep
MN2	ProtA flow through
SP7	Post-VI surge bag
SP8	CEX elute
MN5	CEX flow through
SP9	CD Bag
DS	AUTOMATED SAMPLE LOCATIO
	THROUGHOUT PROCESS TO CE
	CULTURE ANALYZER AND PROT A
	AND CEX CHROMATOGRAPH



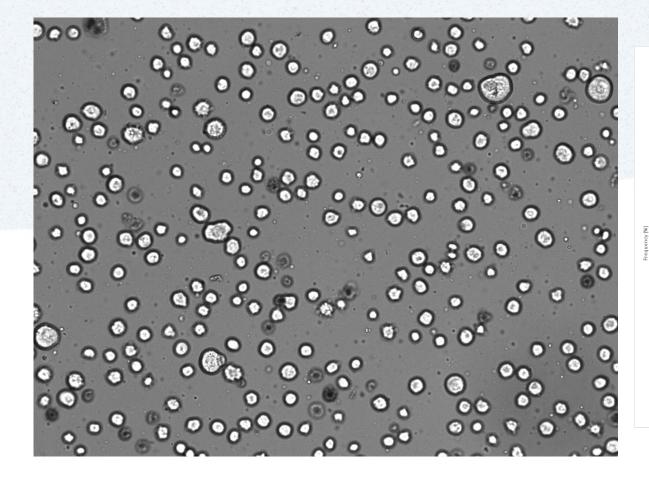


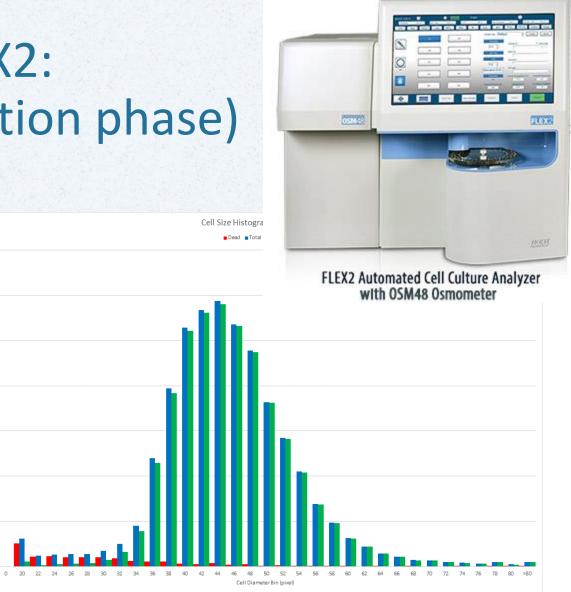
NovaMedical BioProfile[®] FLEX2: COMPLEX DEVICES cell size distributions (growth phase)

15.00%

10.00%

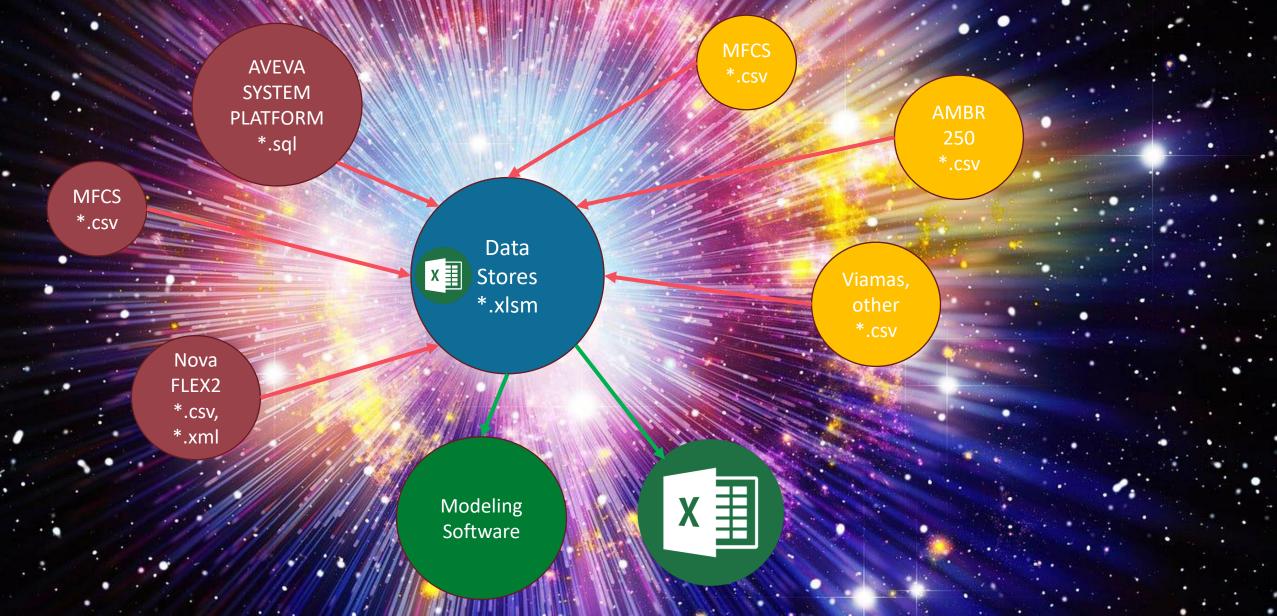
VECTOR DATA




NovaMedical BioProfile[®] FLEX2: cell size distributions (production phase)

10.00%

< 0.00k


4 0.0%

In the beginning... there was chaos

Pharma & Life Sciences | Singapore & The Netherlands

BiosanaPharma requires a reliable cloud-based data platform for continuous manufacturing

Challenge

- Massive amount of process parameters and attributes at different scales and sites.
- Data stored across several different databases and devices, e.g., MFCS, NovaFlex, AVEVA, Excel, etc, as well as in paper files.
- Real time scale-up performance monitoring, failure mode and excursion monitoring needed.
- Connection needed to commercially available modelling packages.

Solution

Using AVEVA Data Hub as cloud data platform to collect data from various sources at the development laboratory and the manufacturing site is promising to ensure comparability, data integrity and contextualization.

Results

Simple, secure data sharing allows the customer:

- a) A single point-of-truth, well contextualized, well searchable real-time and historical data.
- **b)** Efficient real-time visualization and off-line analysis.
- c) Process parameters and quality attributes and excursions using SIMCA On-line MVDA models.

The AVEVA Data Hub solution is a powerful tool for process development as well as manufacturing and can become the hub for the future of biopharma

The future of biopharma is "lights out" continuous end-to-end processing.
 The cost of goods of antibodies will decrease a factor 10 in the next decade by innovation, driven by pressure on originators and choice of health authorities for biosimilars.

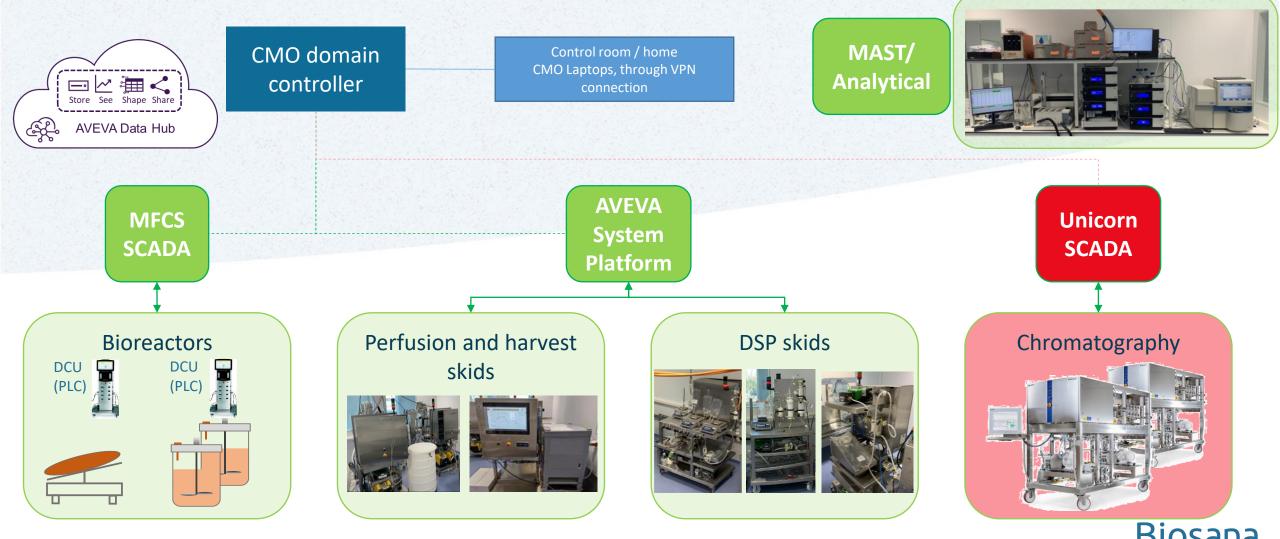
Maarten Pennings, CTO, BiosanaPharma

Learn more

ighthouse nd Sharing	Card and a series of the set of the set			12 No. 1 1 1 1 1 1 1 1	AV Biosa SARTO	HARMA
Biosana-Satorius Biosana-Sartorius Tenants 2 Sharing Status & All T	enants Active			0 2022 1.1 0 2022	Lighthouse Project for Data Analyti uthor: Hans Otto Weinhold rsion / Date (Ready for Approval) / Friday, Septen AVEVA Group plc and its subsidiaries. All rights re he AVEVA loges and AVEVA product names are th ted Kingdom and other countries. Other brands a	nber 30, 2022
Biosana-Satorius 8bc8cc64-625e-4c93-939d-40820 Biosana-Sartorius ♥ All Tenants Active Created 20.02.2023	090e5bb5			AVEVA Grove High Cross, J. Cambridge Cl Tel +44 (0)122 Fax +44 (0)122 Fax +44 (0)122	Madingley Road 83 OHB, UK 23 SEERE	e sous names are the trademarks of their respective companies.
Tenants	My Members	5	My Groups		My Clien	ts
		Filter tenants				
🞽 Administrative Tenant						
□ Name ↑	Status	Users (11)	Clients (1)	Streams (6816)		
BiosanaPharma	Active	4	0	6816	₩	
Sartorius Stedim Biotech GmbH	Active	7	1	0		D :

Data Sources – Singapore Laboratory

Source System	Location	Protocol	In scope for Lighthouse project
Ambr 250 – OPC UA	Singapore	PI Adapter for OPC UA	Yes
Spectroscopy Module – OPC UA/File	Singapore	Python Script to process files	No
MFCS 3.1 – OPC DA/UA	Singapore	PI Adapter for OPC UA	Yes
KML100 – Serial (tbd)	Singapore		No
Levitronics, tbd	Singapore		No
ABER Viamass – Modbus Serial – Modbus TCP bridge	Singapore	PI Adapter for Modubus TCP	Yes
BioSMB – OPC DA/UA (Beckhoff PLC)	Singapore	PI Adapter for OPC UA (Dianomic Foglamp)	No
Novaflex 2 – CSV Files	Singapore	PI Adapter for Structured Files Image processing through custom tool	Yes
ThermoFisher HPLC – tbd HPLC Data Analytics Chromatogram data	Singapore		No
Offline data (Lab) – CSV/Manual data	Singapore	PI Adapter for Structured Files/Simple Web interface	No
Unicorn, SQL Database	Singapore	PI Adapter for RDBMS	No



Data Sources, Netherlands Manufacturing Site

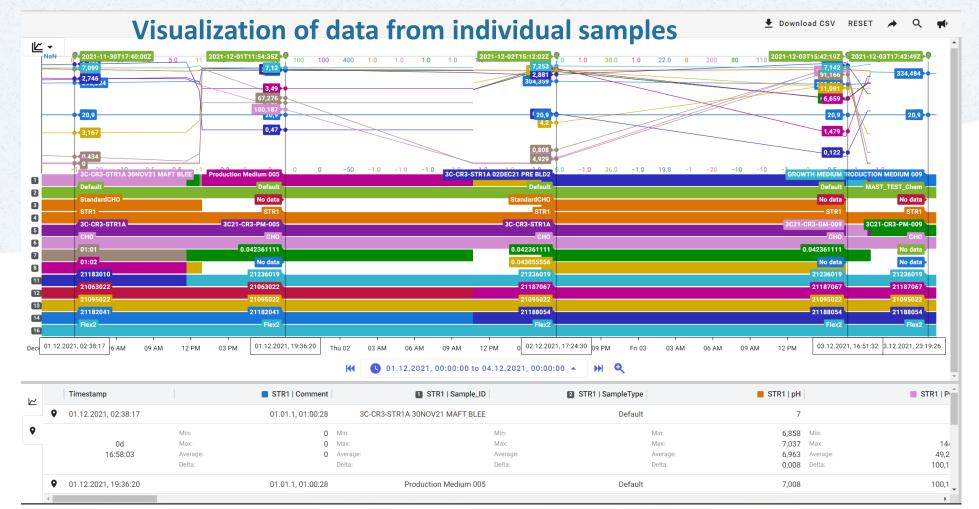
Source System	Location	Protocol	In scope for Lighthouse project
AVEVA System Platform Historian 2020R2 (Backup)	Leiden	Backup SPH Server – PI Connector for Wonderware – PI Server – PI to ADH	Yes
Unicorn (Backup), SQL Database	Leiden	PI Adapter for RDBMS	No
MFCS 3.1 (Backup) – CSV Files	Leiden	PI Adapter for Structured Data Files	Yes
Novaflex 2 – CSV Files	Leiden	PI Adapter for Structured Data Files	Yes
ThermoFisher HPLC – tbd - HPLC Data Analytics - Chromatogram data	Leiden		No
MAST Sampling System, tbd	Leiden		No
Offline data (Lab) – CSV/Manual data	Leiden	PI Adapter for Structured Data Files/Simple Web interface	No

Data Flow – Halix Manufacturing Site

¹⁹ * Data was imported into AVEVA Data Hub from back-ups due to GMP restrictions

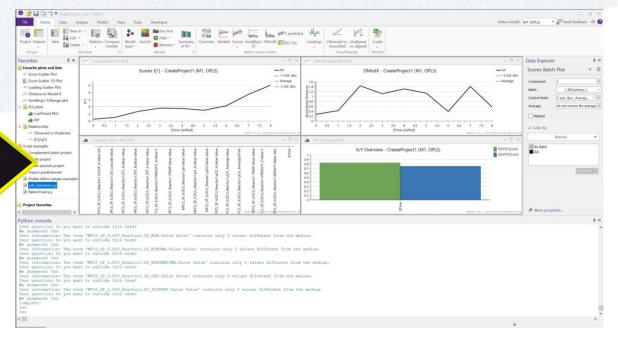
AVEVA Data Hub – Bringing in data from everywhere

AMBR_SP_2.ambr 250.Bioreactor 12.CER - unnormalized, integrated	AMBR_SP_2.ambr 250.Bioreactor 12.CER - unnormalized, integr
AMBR_SP_2.ambr 250.Bioreactor 12.CER - unnormalized	AMBR_SP_2.ambr 250.Bioreactor 12.CER - unnormalized
AMBR_SP_2.ambr 250.Bioreactor 12.CER - integrated	AMBR_SP_2.ambr 250.Bioreactor 12.CER - integrated
AMBR_SP_2.ambr 250.Bioreactor 12.CER	AMBR_SP_2.ambr 250.Bioreactor 12.CER
AMBR_SP_2.ambr 250.Bioreactor 12.Cell viability	AMBR_SP_2.ambr 250.Bioreactor 12.Cell viability
AMBR_SP_2.ambr 250.Bioreactor 12.Cell density	AMBR_SP_2.ambr 250.Bioreactor 12.Cell density
AMBR_SP_2.ambr 250.Bioreactor 12.Cap off	AMBR_SP_2.ambr 250.Bioreactor 12.Cap off
AMBR_SP_2.ambr 250.Bioreactor 12.Calcium	AMBR_SP_2.ambr 250.Bioreactor 12.Calcium
AMBR_SP_2.ambr 250.Bioreactor 12.Bleed volume removed from biore	AMBR_SP_2.ambr 250.Bioreactor 12.Bleed volume removed fro
AMBR_SP_2.ambr 250.Bioreactor 12.Bleed total volume_SP	AMBR_SP_2.ambr 250.Bioreactor 12.Bleed total volume_SP
AMBR_SP_2.ambr 250.Bioreactor 12.Bleed total volume	AMBR_SP_2.ambr 250.Bioreactor 12.Bleed total volume
AMBR_SP_2.ambr 250.Bioreactor 12.Bleed to level total volume_SP	AMBR_SP_2.ambr 250.Bioreactor 12.Bleed to level total volume
AMBR_SP_2.ambr 250.Bioreactor 12.Bleed to level total volume	AMBR_SP_2.ambr 250.Bioreactor 12.Bleed to level total volume
AMBR_SP_2.ambr 250.Bioreactor 12.Bicarbonate	AMBR_SP_2.ambr 250.Bioreactor 12.Bicarbonate
AMBR_SP_2.ambr 250.Bioreactor 12.Batch name	AMBR_SP_2.ambr 250.Bioreactor 12.Batch name
AMBR_SP_2.ambr 250.Bioreactor 12.Base volume pumped	AMBR_SP_2.ambr 250.Bioreactor 12.Base volume pumped
AMBR_SP_2.ambr 250.Bioreactor 12.Base pulse flow on time_SP	AMBR_SP_2.ambr 250.Bioreactor 12.Base pulse flow on time_SP
AMBR_SP_2.ambr 250.Bioreactor 12.Base pulse flow off time_SP	AMBR_SP_2.ambr 250.Bioreactor 12.Base pulse flow off time_SP


Asset Contextualization and data visualization

Visualizationa ctoli As seats a rfr AVIE XAVIB R 2519 Bioreactor

Data from NOVAFLEX Analyzer



Use Data Views to expose data to any external modeling applications, e.g. SIMCA

Create a Data View which contextualizes data From different sources

ame* Description MBR Reactors AMBR Reactors Single	apor Da	ta View Shape	e 🛛 💿 Standard 🔘	Narrow				🏟 Manage Querie
ilter Fields + Add 🗸	× ↑	+	🖌 Auto Refresh					View in API Consol
idex Field		^	A Showing a pr	eview of the first 1818 rows				
Timestamp			Timestamp	CO: (headspace) volume Value 🗿	CO: valve open Value 0	Crossflow cycle time Value	Dead cell density Value	D0 before offset Value
Index			28.04.2023, 00:00:00	38.626242274229654	2.997615312015048	17.139999389648438	0	48.64425320142328
		- 1	28.04.2023, 00:05:00	38.626242274229654	2.9830320778488786	17.139999389648438	0	48.64586795890394
Grouping Fields		~	28.04.2023, 00:10:00	38.626242274229654	3.4843983809947794	17.139999389648438	0	51.131301882549
			28.04.2023, 00:15:00	38.626242274229654	3.4414037969076148	17.139999389648438	0	52.1365651452739
Name Name	:		28.04.2023, 00:20:00	38.626242274229654	3.440767732839658	17.139999389648438	0	51.4119887731431
			28.04.2023, 00:25:00	38.626242274229654	3.8514206170077445	17.139999389648438	0	52.9918764699286
No More Included Fields Eligible for Grouping			28.04.2023, 00:30:00	38.626242274229654	4.000355998226811	17.139999389648438	0	52.7599690704078
			28.04.2023, 00:35:00	38.626242274229654	4.143332006263811	17.139999389648438	0	55.419145456318
		- 1	28.04.2023, 00:40:00	38.626242274229654	4.128649108389461	17.139999389648438	0	53.6882561504673
Query1 Biosana	Assets	^	28.04.2023, 00:45:00	38.626242274229654	3.9976505121248547	17.139999389648438	0	52.9998349827921
Identifying Field			28.04.2023, 00:50:00	38.626242274229654	3.942850433359539	17.139999389648438	0	52.197881797069854
Identifying med			28.04.2023, 00:55:00	38.626242274229654	3.9913080517844044	17.139999389648438	0	52.89523214598697
			28.04.2023, 01:00:00	38.626242274229654	3.9239286933605753	17.139999389648438	0	53.537387505304366
IdentifyingValue Acid flow rate Value Uom Property Id - Acid flow rate Value	=		28.04.2023, 01:05:00	38.626242274229654	3.9819591590899948	17.139999389648438	0	55.005775108517305
			28.04.2023, 01:10:00	38.626242274229654	3.847166711696888	17.139999389648438	0	53.61778179343581
IdentifyingValue Acid volume pumped Val Property Id · Acid volume pumped Value	=		28.04.2023 01:15:00 4	38.626242274229654	3 848012186819008	17 139999389648438	0	53 5283746336434
IdentifyingValue Air (headspace) flow Valu Property Id - Air (headspace) flow Value	=					Iterr	s per page: 50 v 1	- 50 of 1818 < >

Consume data through REST API of ADH using Python module in SIMCA

© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.

OCTOBER 23, 2023

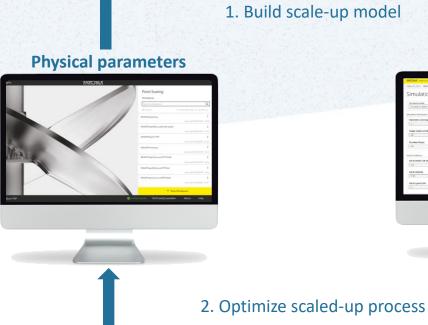
Insilico tools for optimization of a continuous bioprocess

Determining optimal feeding strategies

Chris McCready

Sartorius Corporate Research | Advanced Data Analytics

Bioreactor Scaling – The Challenge



Physical Parameters Versus Metabolic Behaviour

Bioreactor Specific

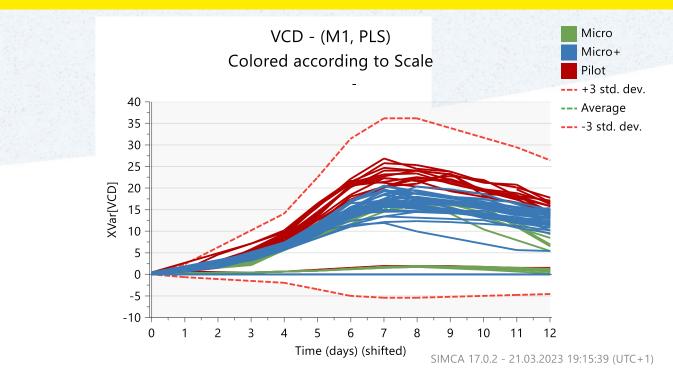
- Transfer recipe between scales
- Verify recipe for scale
- Reproducibilit y and stability of scale and ranges
- Scaling error assessment

1. Build scale-up model

Metabolic behavior

Hardware Independent

- Adjusting process parameters and feeds to optimize process
- Consider during simulation how clones behave in bigger/ smaller scales
- Selecting best cell-lines for intensification and robust scaling


The Data Set

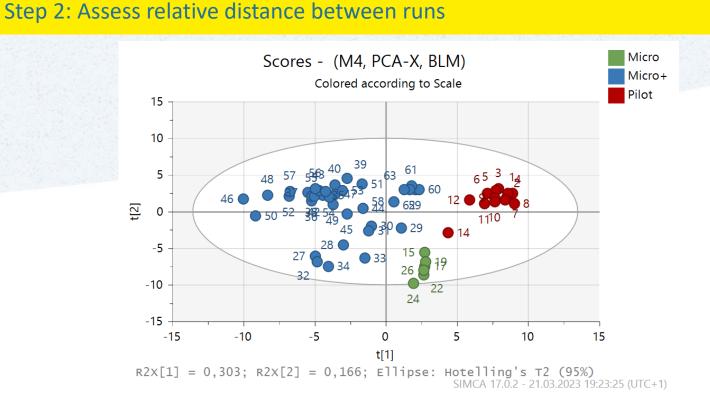
Data scale: compromises three different scales

- Micro: Ambr15
- Micro+: Ambr250
- Pilot: 2-2000L

Data scale: compromises 10 variables

- From cell counter
- From metabolite analyzer

Step 1: Investigate raw data for obvious errors or strange behavior


The Difference Identification Plot

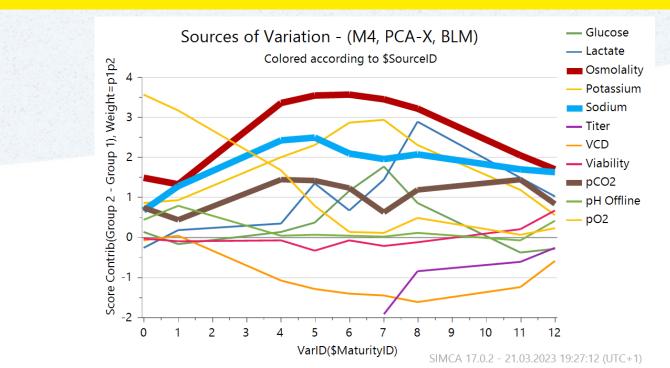
Condense data with PCA

- Each process represents one batch
- Each dot represents all data for that batch
- The closer the dots together the more similar they are

Key observation

- Separation according to scale
- Micro+ more scattered compared to pilot
- None of the Micro+ runs is overlapping with pilot group

The Problem Understanding Plot


Use of contribution plot

- Each line represents a parameter
- The further away from the X-Axis the stronger is that parameter contributing to the before observed difference

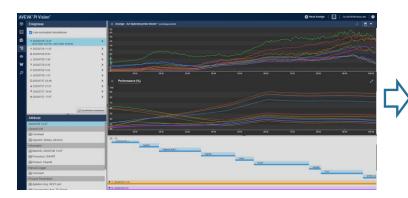
Key observation

- Sodium and pCO2 are higher in the Micro+ scale.
- Both are used for pH control and can point towards problems with pH controller in small scale

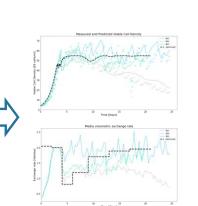
Step 3: Identify the difference

© 2023 AVEVA Group Limited and its subsidiaries. All rights reserved.

Hybrid Cell Culture Model


Combining mechanistic and data driven modeling

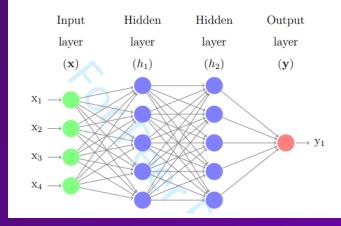
Purpose


- Calibrate a model to predict process operation
- Determine feeding strategy to optimize product
 Opportunity
- Wet-lab experiments are time consuming
- Digital simulations to enhance lab results

Process drivers

- Feeding (perfusion) rate drives cell behaviour
- Removal of accumulated toxins and inhibitors

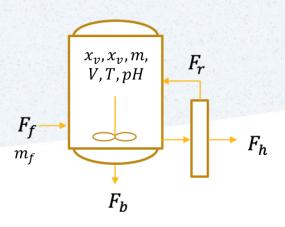
Simulation model



Mechanistic model of cell growth

Kinetic model containing known phenomena

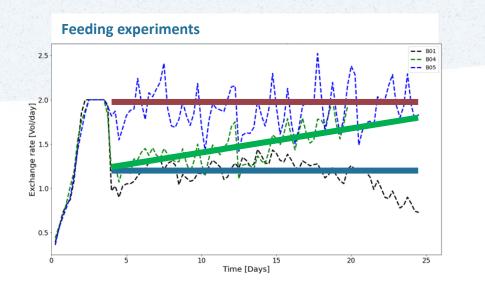
• $\frac{d x_{vcd}}{dt} = \left(\mu_{eff} - u_{death} - \frac{F_{bleed}}{V}\right) x_{vcd}$	Umax 0.447214 kd 0.0349892 kt 0.00529552
• $\frac{d x_{dead}}{dt} = u_{death} x_{vcd} - \left(k_{lyse} + \frac{F_{bleed}}{V}\right) x_{dead}$	kl 0.842443 inh 33.4254
• $\frac{d x_{lyse}}{dt} = \mathbf{k}_{lyse} x_{dead} - \frac{(F_{harvest} + F_{bleed})}{V} x_{lyse}$	$ ightarrow { m Tracking}$ of lysed cells
• $\frac{d\varphi_{bio}}{dt} = k_{inh} x_{vcd} - \frac{(F_{harvest} + F_{bleed})}{v} \varphi_{bio}$	→ Tracking of inhibitory biomaterials
• $\mu_{eff} = \mu_{max} \theta_{sub} \theta_{inh} f(T, pH,)$	ightarrow Growth modifications
• $\mu_{death} = k_{death} + k_{toxic} x_{lyse}$	ightarrow Accumulation of toxins
• $\theta_{inh} = rac{1}{\left(rac{arPhi_{bio}}{2 k_{inh}} ight)^3 + 1}$	
• $\frac{d \Phi}{dt} = k_{\Phi} x_{vcd} - \frac{(F_{harvest} + F_{bleed})}{V} \Phi$	ightarrow Product material balance
• $\mathbf{k}_{\Phi} = f_{ML}(F, T, pH, glc, lac,, \varphi_{bio}, x_{lyse},)$	ightarrow ML model of productivity
- Six coefficients: μ_{max} , k_{death} , k_{lys}	$_{e}$, k_{toxic} , k_{inh} , k_{Φ}


ML model of productivity (yield)

Removal of

Perfusion bio-process

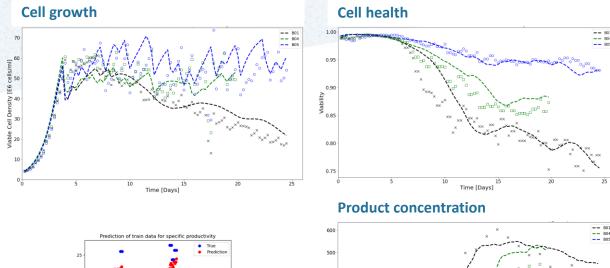
Model Identification

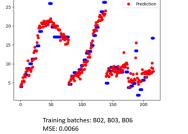

Calibrating a model to predict cell growth and product production from process operation

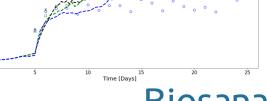
Process drivers

Feeding strategy

31


Process conditions (temperature)




© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.

Process performance

Growth, health and productivity

© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.

Process Optimization

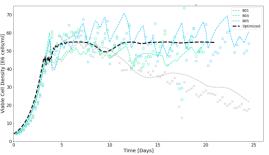
Determine feeding strategy to maximize product yield

Optimization details

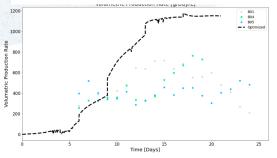
 An optimizer was used to determine feeding at select times throughout the batch

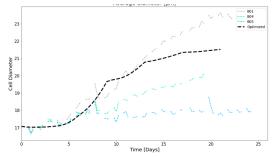

Objective

Maximize product collected


Take-away findings (process understanding)

- Accumulated toxins are related to cell diameter
- Cell diameter (stress) correlated with productivity
- Optimal result when balancing "cell stress" with cell health


Results


Cell growth

Product production rate

Cell health | stress

Thank you. Acknowledgements:

BioSana: Maarten Pennings - CTO Ard Tijsterman - CEO Bart van Schaik - Data Scientist Jake Chng - USP Scientist David George - USP Scientist Haizat Abdul Haman - USP Scientist

Sartorius:

Gerben Zijlstra - Process Technology Manager Chris McCready - Lead Data Scientist Gopi Palamadai - SME Data Architecture Henry Weichert - Technology Consultant PAT Timo Schmidberger - Principal Data Scientist Johan Hultman - Manager IoT and Data Analysis

AVEVA:

Hans-Otto Weinhold - Principal Solutions Architect Reinhold Ehrle - Industrial Software Solution Sales Expert Fabio Dani - Software Developer Engineer We make biologics **affordable** and **accessible** for all patients.

SVISCIS

AVEVA

www.biosanapharma.com Jeroen.van.de.laar@abiopg.nl

Questions?

Please wait for the microphone. State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

Thank you!

This presentation may include predictions - estimates - intentions - beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds - they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements - which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.

ABOUT AVEVA

AVEVA is a world leader in industrial software - providing engineering and operational solutions across multiple industries - including oil and gas - chemical - pharmaceutical - power and utilities - marine - renewables - and food and beverage. Our agnostic and open architecture helps organizations design - build - operate - maintain and optimize the complete lifecycle of complex industrial assets - from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy - food - medicines - infrastructure and more. By connecting people with trusted information and AI-enriched insights - AVEVA enables teams to engineer efficiently and optimize operations - driving growth and sustainability.

Named as one of the world's most innovative companies - AVEVA supports customers with open solutions and the expertise of more than 6,400 employees - 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge - UK.

Learn more at www.aveva.com