Improving AVEVA™ PI System™ data reliability: A multi-layered approach

Brent Bregenzer, Staff Systems Engineer, AVEVA
Kranthi “KK” Tappita, R & D Program Manager, AVEVA
What are we talking about here?

Defining some terms and setting the scope

• Context: time-series data in AVEVA PI System

• “Data reliability,” “data quality,” or “data integrity”?

Accuracy
Is the data free from errors or misinformation?

Completeness
Did we get all the data?

Timeliness
Did the data arrive on time?
What are we talking about here?

Defining some terms and setting the scope

- Context: time series data in AVEVA PI System
- “Data reliability,” “data quality,” or “data integrity”?

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Completeness</th>
<th>Timeliness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there bad values or out of range values?</td>
<td>Did we get all the data?</td>
<td>Did the data arrive on time?</td>
</tr>
</tbody>
</table>
What are we talking about here?

Defining some terms and setting the scope

• Context: time series **data in AVEVA PI System**

• “Data reliability,” “data quality,” or “data integrity”?

Accuracy
Are there bad values or out of range values?

Completeness
Are there data gaps or flatlines?

Timeliness
Did the data arrive on time?
What are we talking about here?

Defining some terms and setting the scope

- Context: time series **data in AVEVA PI System**
- “Data reliability,” “data quality,” or “data integrity”?

Accuracy
Are there bad values or out of range values?

Completeness
Are there data gaps or flatlines?

Timeliness
Is the data stale?
Why do we care about this topic?

Testimonials from AVEVA PI System administrators and business owners

- AVEVA PI System data feeds rollups for our corporate dashboards
- The data needs to be accurate
- AVEVA PI System is critical to monitoring our operations
- Users complain loudly when it’s stale or bad
- Our modeling applications are sensitive to bad quality data
- We need to keep AVEVA PI System data as clean as possible.
Goals & approaches

• Main goals:
 o Protect against issues that negatively impact data reliability
 o Identify and report issues as soon as possible
 o Not concerned with data cleansing or profiling

• Approaches
 o Governance and change management
 o High availability architectures
 o System monitoring
 o Monitoring of individual “tag health”
Data governance
Data quality and governance

Process and governance approaches

• Document and follow processes for changes to source systems and AVEVA PI System.

• Communication and collaboration are key.

• Data quality & governance - best practices (PI World 2019 San Francisco)

What is Data Quality?

Objective

- Accessibility
- Appropriate amount of data
- Completeness
- Concise
- Consistent
- Accuracy / Free-of-Error
- Interpretability
- Security / Auditable
- Timeliness

Subjective

- Believability
- Ease of Manipulation
- Objectivity
- Relevancy
- Reputability
- Understandability
- Unique / Value-Added

© 2023 AVEVA Group Limited and its subsidiaries. All rights reserved.
High availability (HA) architecture
High availability

PI Interface Failover Pair

Primary PI Interface Node

Backup PI Interface Node

Identical data

Primary PI Interface Node

Backup PI Interface Node

Buffered identical data

Metadata synchronization

Secondary PI Data Archive Server

Primary PI Data Archive Server

 Archived, compressed data

Data Source

PI Data Archive Collective

© 2023 AVEVA Group Limited and its subsidiaries. All rights reserved.
AVEVA adapter failover: On-premises

Client-side failover

Failover modes:
- Hot
- Warm
- Cold

© 2023 AVEVA Group Limited and its subsidiaries. All rights reserved.
AVEVA adapter failover: Cloud

Client-side failover

Remote assets, sensors, & IIoT devices

Data Source

AVEVA Connect
AVEVA Data Hub
Failover Endpoint

Failover modes:
- Hot
- Warm
- Cold

© 2023 AVEVA Group Limited and its subsidiaries. All rights reserved.
Client-side and server-side failover for AVEVA PI Server and AVEVA™ Data Hub

Supported failover endpoints

- AVEVA PI Server
- AVEVA Data Hub via AVEVA™ Connect

Client and server failover modes:
- Hot
- Warm
- Cold

Diagram:

- **Primary** and **Secondary** data sources are connected to **AVEVA adapters**.
- **Client failover service** is available between **Primary** and **Secondary** AVEVA adapters.
- **Client-side and server-side failover** for AVEVA PI Server and AVEVA™ Data Hub.
System monitoring
Hundreds of instances of connectors and interfaces can require around-the-clock observation.

Problems and challenges

- Tracking and monitoring
- Quality degradation
- Limited insight and visualization
Manage software deployments at scale with AVEVA™ Edge Management
With AVEVA Edge Management, we can now monitor
System monitoring with AF & asset analytics: PSM

AVEVA PI System status monitoring from AVEVA PI System technical adoption services

- The AVEVA PI System monitoring service offering includes AF templates to help with monitoring at several levels.
- Leverages data from Perfmon, Ping, & TCP Response Interfaces.
- Example:
 - Server and component monitoring help minimize impact of wide outages (many tags).
 - Examples: poor service health, low I/O Rate, queuing data, and network issues.
 - Watchdog tags: key tags that can help identify data source or interface issues.
 - Stale or flatline data.

© 2023 AVEVA Group Limited and its subsidiaries. All rights reserved.
PSM: Identify & alert

Event frames

Add Context
- Reason attribute
- Annotations
- Acknowledgement
Notifications

Event: PSMR01 - Data Archive Historical Data Corrupted Archives 2021-05-07 17:54
Start Time: 5/7/2021 15:54:16 PM Coordinated Universal Time (GMT-06:00:00)
Severity: Minor

The PI Archive Subsystem has detected archive corruption. One or more historical archive files are currently corrupted. These archives need to be reprocessed to fix the issue. You can access the list of archives from PI SAFET -> Operations -> Archives. Look at the Corrupt column to know which archives are corrupted.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value at Event Frame Start Time</th>
<th>Value at Email Send Time</th>
<th>Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI Archive Subsystem_Corrupt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archives Count</td>
<td>1</td>
<td>0</td>
<td>0, there should not be any corrupted archives</td>
</tr>
<tr>
<td>PI Archive Subsystem_Archiving Flag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Archive Write Rate</td>
<td>306.6</td>
<td>306.1</td>
<td>=>0</td>
</tr>
<tr>
<td>PI Archive Subsystem_Failed Archive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHF Flag</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Value at Event Frame Start Time can be different than Value at Email Send Time if this is a close email, or if there is a delay sending the notification email and the value has changed.

Troubleshooting steps:
- The preferred way to reprocess archives is to use the online reprocessing capability in PI SAFET. More information can be found here:
 - [Online Archives reprocessing](#)
- If the online reprocessing cannot be used then the offline archive utility (psarch) must be used.
 - Offline reprocessing [23474958]

Link to this event in PI Viewer: Event Details hyperlink

Element Path: /users/psarchive/psarchive (example) /PSCH00/PSR01/PSR01 - Data Archive

Notification Rules: Archive Corruption Alert

Notifications
PSM: Identify & alert

Event: PSRv01 - Data Archive Historical_Data_Corrupted_Archives 2021-05-07 17:54
Start Time: 5/7/2021 5:54:16 PM Coordinated Universal Time (GMT-07:00)
Severity: Minor

The PI Archive Subsystem has detected archive corruption. One or more historical archive files are currently corrupted. These archives need to be reprocessed to fix the issue. You can access the list of archives from PI Suite -> Archive. Look at the Corrupt column to know which archives are corrupted.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value at Event Frame Start Time</th>
<th>Value at Email Send Time</th>
<th>Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI Archive Subsystem_CorruptedArchivesCount</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>PI Archive Subsystem_ArhcivingFlag</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Average Archive Write Rate</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>PI Archive Subsystem_FailedArchiveSnackBarFlag</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Value at Event Frame Start Time can be different than Value at Email Send Time if this is a close email, or if there is a delay existing the notification.

Troubleshooting steps:
- The preferred way to reprocess archives is to use the online reprocessing capability in PI Suite. More information can be found here: [Online reprocessing](#).
- If the online reprocessing cannot be used then the offline archive utility (inpsrchx) must be used. [Offline reprocessing](#).

Link to this event in PI Vision: [Event Details](#).

Element Path: [Unclassified](#)
Notification Rules: Archive Corruption Alert

Reprocessing an archive

Procedure
1. Open PI Suite, choose Operations -> Archives. If you have drop down corrup archive rules, PI Suite prompts you to reprocess them.
PSM: Identify, alert, visualize
Tag-level monitoring
Monitoring tags with AF & asset analytics

• Extension of the PSM watchdog tag methodology
• Typically used for a subset of critical tags
• Scalability considerations:
 • Load on PI Analysis Service
 • Follow Asset Analytics Best Practices for better scaling.
 • Determine practicality of Notifications and design accordingly.
• Published customer examples:
 • Monitoring Data Quality with Asset Analytics (PW2018)
 • Better Data Quality for Better Data Science with the PI System (PW2018)
Tag monitoring: Bulk reporting & analysis methodology

1. Low frequency, periodic queries of many tags
2. Output lists of tags with relevant data/context
3. Store and distribute output to AVEVA PI System admins/analysts
4. Consume lists with reporting/visualization tools
Bulk method: The simplest approach

Stale and bad points plug-in in PI SMT

- Run manually by system admin
- Output to CSV file
- Consume CSV with Excel
Bulk method: A more automated approach

Run script(s) on a schedule using AVEVA PI System developer technologies

Developer technologies

• Most typical: PI AF SDK
 o .NET app
 o Called from Powershell

• Older: piconfig (.bat files)

• Other possibilities:
 o Powershell Tools for the PI System
 o (sqlcmd or SQL Server) + PI SQL linked server

Scheduling options

• Windows Task Scheduler
• Other 3rd party tools
• SQL Server Agent (If using SQL Server)
Bulk method: A more automated approach

Output tag list(s)

Low frequency, periodic queries of many tags

Output lists of tags with relevant data/context

Example output options

• CSV files
• SQL tables
• PI tags for summary values
 • Example: stale tag count
Bulk method: A more automated approach

Store and distribute output to AVEVA PI System admins and/or analysts

Low frequency, periodic queries of many tags

Output lists of tags with relevant data/context

Store and distribute output

Example distribution options
- Share folder
- Notifications attachment or link
- SQL table
Bulk method: A more automated approach

Visualize and analyze the data

- Low frequency, periodic queries of many tags
- Output lists of tags with relevant data/context
- Store and distribute output
- Reporting/visualization tools

Example reporting options
- Excel
 - Filters
 - Pivot table/chart
- BI tools
 - Slice and dice on dimensions like failure type, point source, interface machine name, etc.
- AVEVA™ PI Vision™ dashboards
 - Summary values written to PI points
 - AF elements
Bulk Method: Reporting

Simple example in Excel with pivot table and chart
To Summarize

• Presented methods to help increase AVEVA PI System data reliability
• Suggested approaches:

 Better governance and change management

 Use of high availability architectures

 System-level monitoring

 Tag-level monitoring
Brent Bregenzer
Staff Systems Engineer
• AVEVA
• Brent.Bregenzer@aveva.com

Kranthi Kumar(KK) Tappita
R&D Partner Technologist, Program Management
• AVEVA
• Kranthi.Tappita@aveva.com
Questions?

Please wait for the microphone.
State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

Thank you!
This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.
ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life’s essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world’s most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com