OCTOBER 26, 2023

Calculating Sustainability Benefits of Al

A Discussion plus Case Study

Michael T. Reed – Sr. Manager, Al Center of Excellence, AVEVA

Chih Hsing Tu – Maintenance Center, PdM Department Lead, Formosa Petrochemical Corporation

Wenting Zhu – Sustainability Program Manager, AVEVA

Agenda

Al at AVEVA

AVEVA Predictive Analytics & sustainability

Benefit capture methodology

Case study – Formosa Petrochemical Corporation (FPCC)

The next steps

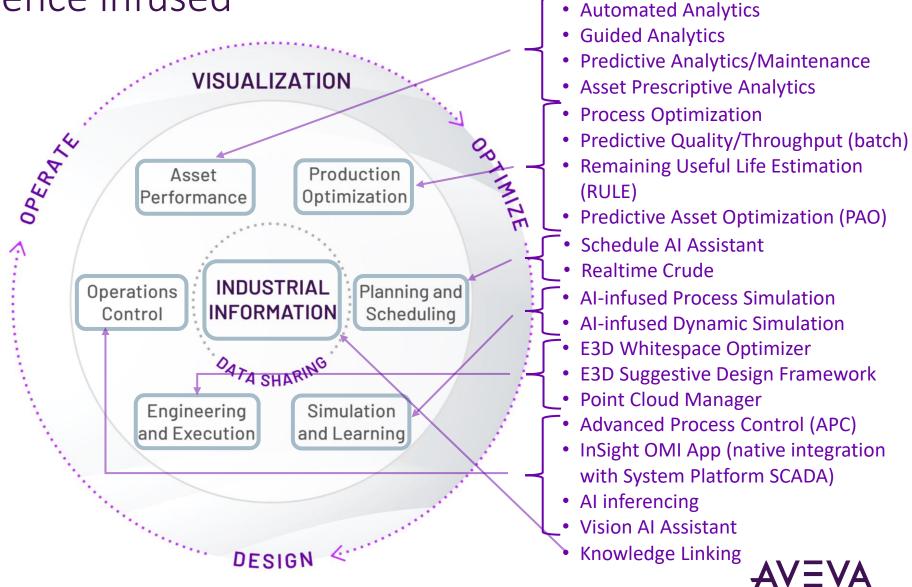
Al at AVEVA

The '5 Ps' of artificial intelligence infusion

Artificial intelligence infused

Across AVEVA's broad product portfolio

Predictive


Performance

Prescriptive

Prognostic

Perceptive

17 commercially released Al products

Al-driven sustainability (1)

- Increase operational & energy efficiency
- Reduce carbon-based industrial waste
- Identify and improve underperforming assets

Sustainability and Profitability are <u>not</u> opposing forces

CASE STUDY

AVEVA Predictive Analytics & sustainability

Proven tool – new dialogue

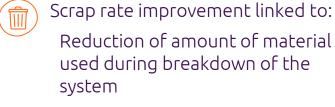
AVEVA Predictive Analytics

How does it work?

- Uses historical data to describe how a piece of equipment normally operates and build a model (patented AI algorithm for optimized results)
- Continuously monitors behavior in real-time
- Alerts when the operation differs from the historical norm
- Early warning detection of equipment problems
- Advanced analysis capabilities including problem identification and root cause analysis

Benefits of Predictive Analytics program for OEE/maintenance

OEE / PERFORMANCE



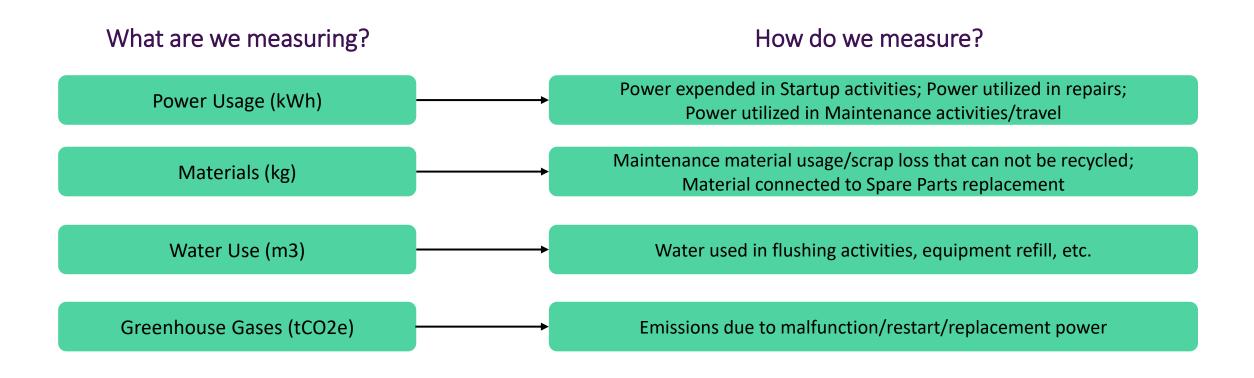
(iii) Rework rate optimization

Inventory improvement

RELIABILITY / FAILURE RATE

Spare parts reduction

SCRAP RATE / YIELD



Sustainability KPIs for AVEVA Predictive Analytics

Measuring the impacts in areas other than profitability/loss

Benefit capture methodology

Proven method – new 'currency'

An older method, a newer application

EPRI Report 1004015 (November 2001) is our Guide Map

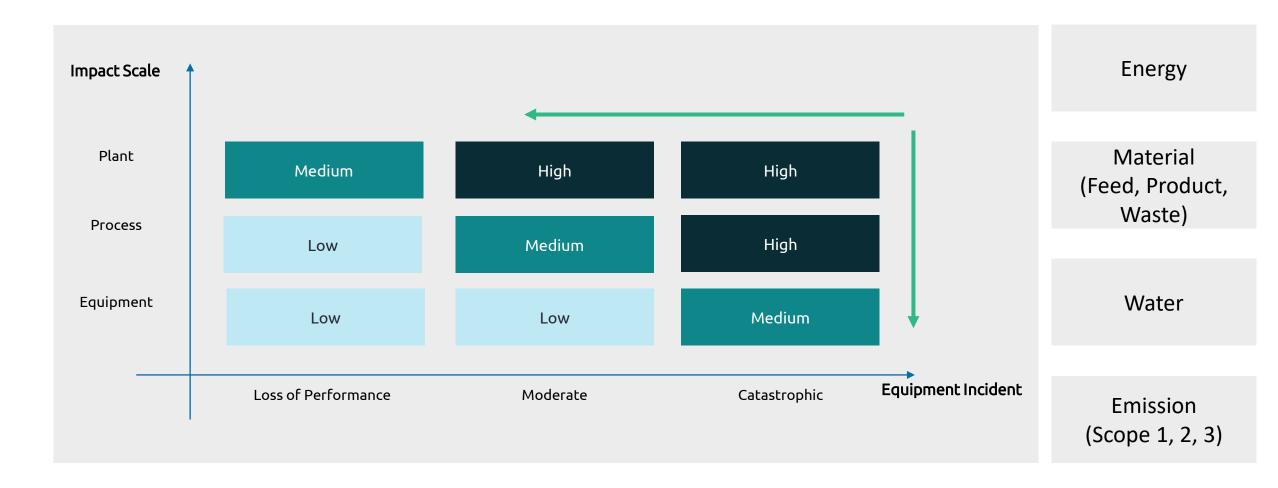
Guideline on Proactive Maintenance

Technical Report

BCOST BENEFIT CALCULATION

Occurrence Assumption Worksheet				
Plant Name:	Waukegan Sta. 16	Unit Number:	7	
Definition of detected fault:		т, В phase bushing sig	nificantly hotter than	adjacent phases
Occurrence No.:	WAK-008	Max. Rated Load:	353	
Occurence Assumption:	(a)Catas tr.	(b)Moderate	(c)Loss of Perf.	(d)Actual
Occurrence Description	Transformer destroyed, forced	Bushing failure, transformer		Bushing replaced.
Loss of Generating Revenue				
Power Reduction (MW)	353	353	0	35
Hours	3456	100	0	4
Capacity Factor (%)	60	60	0	
Forced Outage (Yes =1 No =0)		1	. 0	
Maintenance Costs				
Cost of Parts (\$)	\$1,250,000	\$20,000	0	200
Labor Hours (Hrs)	2160	1008	0	7
Percent Probability of Fault	10	90		
Occurrence				
Definitions:				
OCCURRENCE - any detected or diagnosed fault	which the station take	es action, whether the	action was proactive	or reactive.
When the station schedules repairs or modifies pla				
If maintenance is deferred based on a PDM techno	logy, the CBA, based	on the deferral, will be	calculated on the tin	ne-value of \$\$\$ save
CATASTROPHIC - Total equipment failure requi	ring full repalcement.			
MODERATE - System failure resulting in some re	pairable equipment d	amage.		
LOSS OF PERFORM ANCE - Reduction of opera	ting capacity due to f	ault.		
ACTUAL - Actual cost of outage.				
				Input Data
	Calculated Values			
Total Cost Benefit - This Occurrence	\$855,637	Average	Replacement Power	9
Maintenance Costs Savings (\$):	\$177,792		Costs (\$/MWH)=	
Impact on EFOR (%):	4.97			

Cost benefit calculation example



Converting EPRI cost calculation to sustainability KPIs

SUSTAINABILITY KPIS	SUSTAINABLE VALUATION FORMULA
GHG EMISSIONS Overall & per unit produced	Scope 1 GHG emissions reduction ¹ + scope 2 GHG emissions reduction ² + scope 3 upstream GHG emissions reduction ³ ¹ Scope 1 GHG emissions = core process + by-process direct GHG emissions ² Scope 2 GHG emissions = energy related emission = energy consumption x energy CO2 footprint ³ Scope 3 upstream GHG emissions = quantity of feedstock x feedstock upstream CO2 footprint
ENERGY Overall & per unit produced	Utilities direct consumption reduction in core process (electricity) + by-process utility consumption reduction
MATERIALS Overall & per unit produced	Reduced scrap amount per unit produced x number of units produced + reduced amount of not qualified units
WATER Overall & per unit produced	Water consumption reduction in core process + water consumption reduction in by-process

AVEVA sustainability impact analysis for Predictive Analytics

Calculated outcomes

Emissions linked to the material cost. It accounts for the emissions due to production, transportation, etc. of material

Sustainability KPI		Type of incident		
Sustainability Kri	High	Medium	Low	
Energy cost	kWh	kWh	kWh	
Energy for Shutdown & Restart	kWh	kWh	kWh	
Energy needed to shut down the plant/process/equipment if a failure arises and energy needed to restart the plant/process/equipment after maintenance actions		KVVII	KVVII	
Energy required for Maintenance team transportation				
As the maintenance team goes back and forth between the plant and home, energy is consumed in the form of gasoline to travel. To calculate it:				
Average distance travelled by the maintenance team	km	km	km	
Maintenance work duration	hours	hours	hours	
Energy used for Maintenance equipments				
Specific equipment such as welding station or crane may be used to carry out maintenance, hence consuming energy. To calculate it:				
Power consumption of the equipment (welding station, crane, etc.) used for maintenance	kW	kW	kW	
Duration of use of the equipment	hours	hours	hours	
Material cost	kg	kg	kg	
Spare parts	kg	kg	kg	
It accounts for the new spare parts used to fix the equipment(s) and for the defective parts that have been replaced				
Maintenance scrap	kg	kg	kg	
As maintenance implies a shutdown of the equipment, work-in-progess material may be wasted (at process-level)				
Water cost	m³	m³	m³	
Flushing water	m³	m³	m³	
Water used to clean plant/process/equipment during incidents				
Other maintenance water	m ³	m³	m³	
Water consumed during maintenance that is not flushing water (for eg, to cool down an equipment)				
GHG Emissions (direct & indirect)	tCO₂e	tCO₂e	tCO₂e	
Emissions directly released	tCO₂e	tCO₂e	tCO₂e	
Direct emissions that occur because of the incident ((for eg, flared gas)				
Emissions due to energy consumption	Calculated	Calculated	Calculated	
Indirect emissions related to energy consumed during maintenance during (for eg, electricity or gasoil to fuel maintenance equipment)				
Upstream emissions from material consumption	Calculated	Calculated	Calculated	

Case study – Formosa Petrochemical Company

Formosa Plastics Group

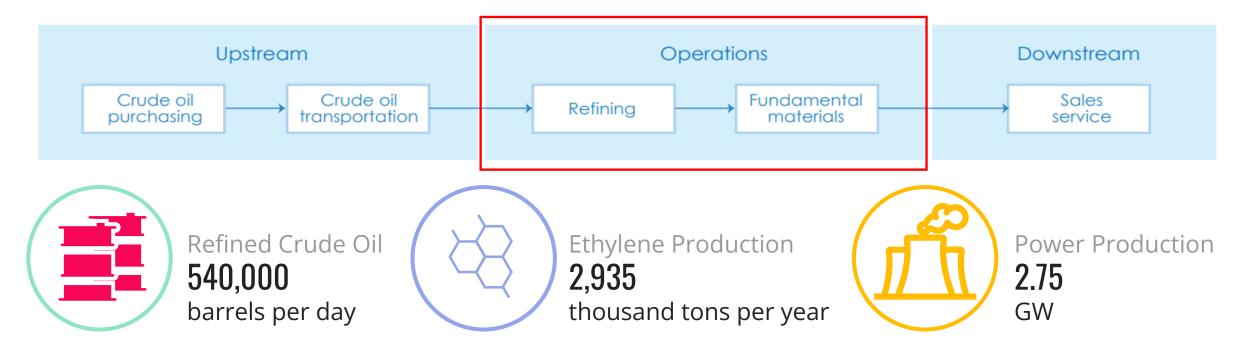
Founded in 1954, FPG aims for creating diversified and globalized enterprises

\$29_{bn}
Total Capital

\$143_{bn}
Total Assets

\$87_{bn}
Total Sales

Diversified and Globalized Enterprises


With over 60 years of development, FPG has established a steady base and started to operate diversified and globalized enterprises. Except for our solid strength in petrochemical industry, we also built up a successful development in electronics industry. Looking forward, we embrace the world with roots in Taiwan. Committed to sustainable business development as well as social health and prosperity, we will continue in our work to build a better tomorrow for all.

Formosa Petrochemical (FPCC) Key Business Overview

FPCC refined crude oil to produce aromatics and olefins for downstream businesses

NOTE:

1. Source: Website of Company Overview (Link), and Formosa Petrochemical Corporation Sustainability Report 2021, Link

We developed the roadmap to carbon neutrality

2025

Target emissions (10,000 tons)

2,467

Action Plans

- Energy conservation and carbon reduction improvement measures
- Establish and develop renewable energy, such as solar power and wind power
- 3. Replace coal with refuse derived fuel for mass burning in boilers

2030

Target emissions (10,000 tons)

2,271

Action Plans

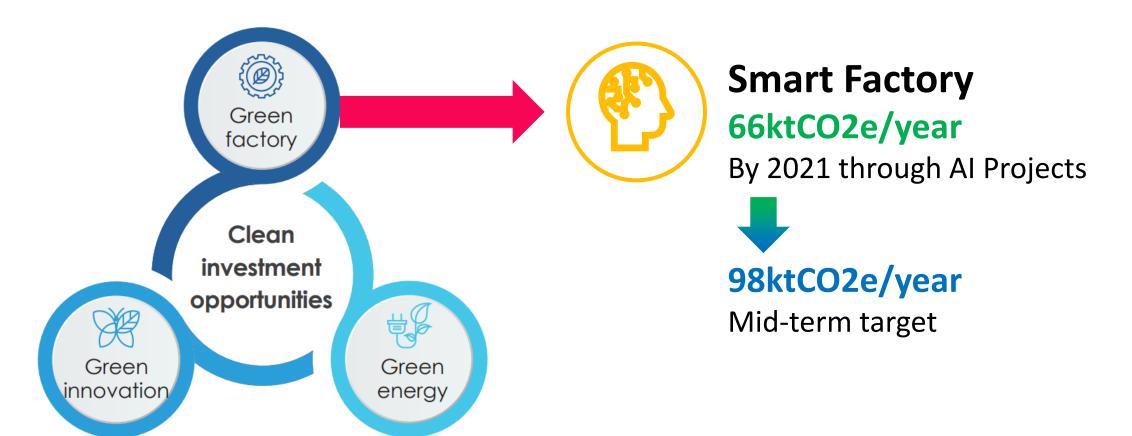
- Reduce the amount of electricity purchased from Taiwan Power Company
- Process technology optimization and improvement
- 3. Evaluate using biomass fuel to replace 5% of coal consumption by coal-fired power plants

2050

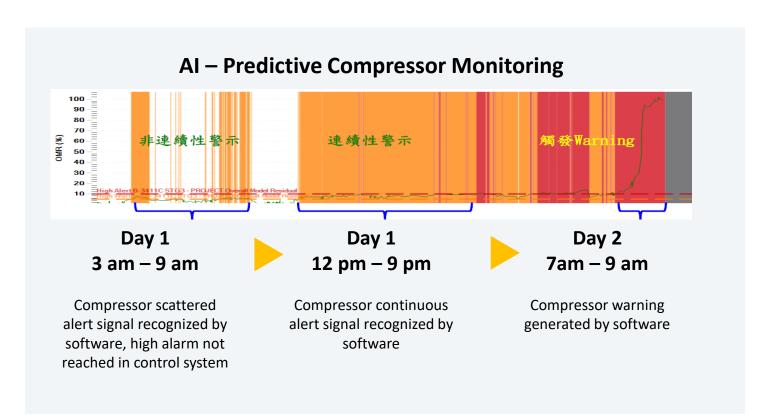
Target emissions (10,000 tons)

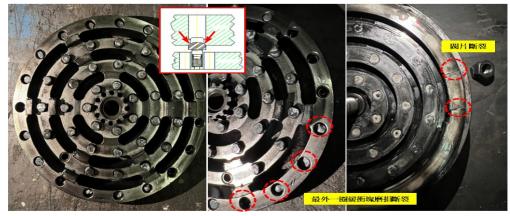
Carbon neutrality

Action Plans


- 1. Evaluate energy transition
- 2. Evaluate recycling and reuse of waste oil and plastic
- 3. Evaluate the development of energy storage systems, hydrogen power industry, ammonia industry, high quality, and investment in innovative industries
- 4. Evaluate the adoption of CCS technology

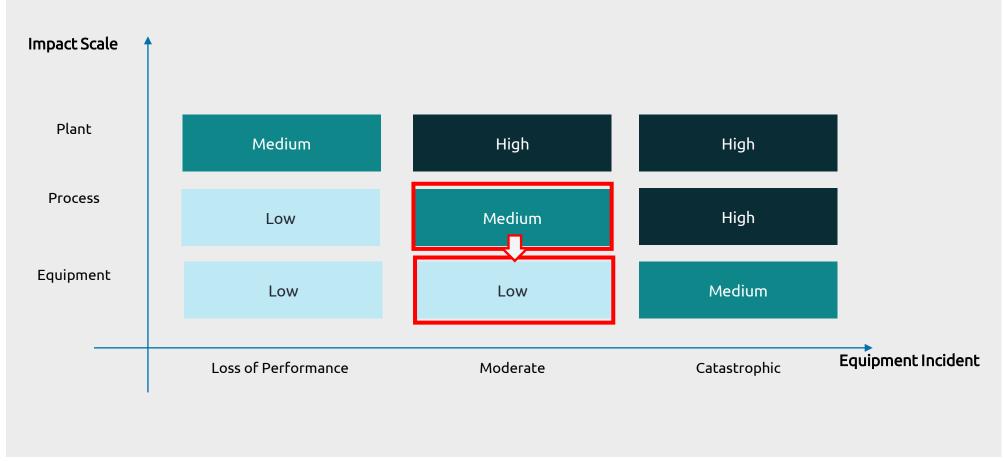
SOURCE: Formosa Petrochemical Corporation Sustainability Report 2021, Link





We invested in smart solution and AI is critical element

Case Study: Early catch of compressor sealing breakage



Avoid process hydrogen flaring & spare parts scrap Equivalent to ~199t/yr tCO2e saving

A medium-level impact was mitigated to low-level impact

Avoid compressor trip and more severe damage to the equipment & equipment

Impact Calculation Inputs

Parameter	Units	Medium	Low
Shutdown & Restart			
Power of equipments for shutdown/restart	horsepower	15000	15000
Shutdown/Startup Unusual Operation Time	hours	0	0.5
Maintenance team			
Average distance travelled by the maintenance team between plant and home	km	10	10
Daily Travel Frequency	#	2	2
Maintenance work duration	days	1	1
Number of workers	#		
Maintenance equipments			
Power consumption	kW	3.5	3.5
Duration of use	hours	3	3
Materials			
Nitrogen consumption	ton	1	1
Spare parts	kg	24	12
Equipment scrap	kg	24	12
Process scrap (hydrogen purge/flare)	ton	4.067	0.067

Calculation Parameters and Emission Factors

Category	Plant	Unit	Value
Time	Numbers of hours / year	h	8,760
Conversion	Power of 1 hp (horsepower) in kW	kW	0.75
	Electricity mix footprint (Taiwan)	kg_CO2eq/kWh	0.84
	Gas oil footprint	kg_CO2eq/L	3.10
	Footprint of plastics supply	kg_CO2eq/kg	2.35
Emission factors	Footprint of plastics incineration	kg_CO2eq/kg	2.178
Emission factors	Footprint of hydrogen	kg_CO2eq/kg	0
	Footprint of production of hydrogen (SMR)	kg_CO2eq/kg	11.10
	Emission factor of a van	kg_CO2eq/km	0.55
	Footprint of nitrogen (production & distribution)	kg_CO2eq/kg	0.08
	Gasoil enrgy mass density	GJ/t	42.60
Gasoil data	Gasoil mass density	kg/m3	832.00
	Gasoil consumption of a VAN	L/km	0.09

Impact Results

Scale up impact to annual results reflecting average frequencies of successful early catches

Category	KPIs	Units	Without Predictive Analytics (Baseline)	With Predictive Analytics	
			Mean Value	Mean Value	Delta (absolute)
	Total CO2_eq emissions	t_CO2eq	226.74	28.00	-198.74
GHG emissions	Of which scope 1	t_CO2eq	0.00	0.00	0.00
	Of which scope 2	t_CO2eq	0.04	23.58	23.53
	Of which scope 3 upstream	t_CO2eq	226.70	4.42	-222.27
Energy	Energy consumed	kWh	52.59	28,016.33	27963.75
Material	Total material consumed	kg	25,575.00	5,455.00	-20120.00
	Of which hydrogen	kg	20,335.00	335.00	-20,000.00
	Of which industrial plastics	kg	240.00	120.00	-120.00


FURTHER APPLICATIONS

The next steps

Predictive Asset optimization & beyond

AVEVA Predictive Asset optimization

PAO Performance Optimisation

Real-time **PLANT** end to end rigorous first principles data reconciliation and optimization

PAO Performance Simulation

Real-time **SUB SYSTEM** rigorous first principles data reconciliation

PAO Performance Equations

Real-time **COMPONENT** KPI calculations using thermodynamic properties data

New horizons; same ocean

You are likely further along your journey than you thought...

- For most Industrial Software, the emphasis in the past has been on business impact, based upon effects of this utilization as translated to costs and potential savings - \$\$\$
- The landscape has changed, and now there is a clarion call to also achieve your organization's stated Sustainability Goals. This means new drivers of 'success'
- You need not start at 'zero'.
 Fortunately, many of the same industrial software tools that you are currently using, and that are being developed with cutting-edge AI features, can be used to help you quantify these new goals.



Michael T. Reed
Sr. Manager, Al Center of Excellence
AVEVA
Michael.Reed@aveva.com

Chih Hsing Tu Maintenance Center, PdM Department Lead Formosa Petrochemical Corporation (FPCC)

Wenting Zhu
Sustainability Program Manager
AVEVA
Wenting.Zhu@aveva.com

Scan QR code for more details in the Report

Interested in participating in an impact analysis?

Please contact sustainability@aveva.com

Questions?

Please wait for the microphone. State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

Thank you!

AVEVA

This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.

- in linkedin.com/company/aveva
- @avevagroup

ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world's most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com

