OCTOBER 26, 2023

B.Grimm Power's Maintenance Strategy Optimization by Data-Driven Approach

A Discussion plus Case Study

Michael T. Reed – Sr. Manager, Al Center of Excellence, AVEVA

Chih Hsing Tu – Maintenance Center, RdM Department Lead, Formosa Petrochemical Corporation

Wenting Zhu – Sustainability Program Manager, AVEVA

B.Grimm Power's Maintenance Strategy Optimization by Data-Driven Approach

Tichaya Janngio

Senior Key Account Manager

- B.Grimm Technologies Company Limited
- tichaya.j@bgrimmgroup.com

Tanapat Techawuthikorn

Customer Success Manager

- Rayong Engineering and Plant Service Company Limited
- tanapatt@scg.com

B.Grimm Technologies Introduction

B.Grimm Technologies Introduction

We provide innovative industrial systems solutions, together with sustainable energy and digital technologies

B.Grimm Technologies Introduction

Solutions that pioneer change, through innovative processes and products for the world

Healthcare

Energy

Energy Source

(LNG, Clean Energy Source, CO₂ Emission Reduction)

Energy Generation

(Cogeneration, Renewable, Hybrid Solution)

Energy Technology

(Smart Grid, Transmission & Distribution, Energy & REC Trading, Solar Rooftop, Battery Storage)

. B.Grimm Power PCL.

Industrial

Building Materials

- MBM Metalworks
- B.Grimm Technologies
- Chubb
- KSB Pumps

Cooling

- B.Grimm Carrier
- . B.Grimm Airconditioning
- Beijer B.Grimm
- Carrier Thailand
- The Unisus Green Energy

Pharma

MSK

- Merck
- Biomonde

Medical Services

PrimoCare Medical

- ZenBio
- · B.Green

Financial Comparison Platform

Masii Group (Thailand)

Digital

Savings Asia

Cyber Security

22kN

Lifestyle

Sport Club

• Thai Polo & Equestrian

Investment

Real Estate

. B.Grimm Real Estate

Arts and Fashion Retail

- Ma Maison
- The MFT Store Thailand
- Nymphenburg

Investment

B.Grimm Capital Partners

Energy Equipments

- B.Grimm Babcock Power
- Hamon-B.Grimm

Digital Solutions

Vault Dragon

Micro Financing

Siam Digital Lending

Restaurant

Spa Paris Spa

· Provence Restaurant

Education

Harbour.Space University

Transportation

- Panrail
- PCM

Medical Devices

- Getinge
- Zeiss

Digital Transformation in B.Grimm Corporate

B.Grimm Technogies Company collaborates with expert partners, REPCO NEX to develop and deliver innovative technologies to B.Grimm Corporate and Thai Industry

Digital Technologies Increase Asset Competitiveness by Maximize Power Plant Uptime.

B.GRIMM Technologies

B.Grimm Technologies Company brings innovative technologies to B.Grimm Corporate.

REPCO NEX is practitioner who kill the pains with proven successes in applying digital technologies to maximize asset performance either in the aspect of reliability and lifetime.

Since 2001

We are THE INNOVATIVE INDUSTRIAL SOLUTIONS PROVIDER offering ONE STOP **SERVICES** with more than **EXPERIENCES** for more than 20 PLANTS with over 5,000 CRITICAL ASSETS. As a solution practitioner in the petrochemicals industry, we bring our experiences and proven innovative solutions that will help you increase the utmost production efficiency and reliability.

ABOUT US

30-50%

Extend Asset Lifetime

Exceptional Customer Satisfaction is our service effort for sustaining long term relationship

Tangible impact products & services to empathize **Customer's Pain Points** are professionally delivered with proven engineering facts and our 30 years' practical expertise

Original Steam Turbine Maintenance Strategy

- Steam turbine major overhaul is scheduled at time-based interval of 6 years by OEM.
- The thorough steam turbine inspection is usually conducted in major overhaul program leading to a big maintenance activity consuming large resources and long total plant outage duration.
- The optimized strategy especially from extending major overhaul schedule can lead to huge benefits from;
 - Shorter outage duration
 - Reduced maintenance cost
 - Lower risk of failures induced by unnecessary action
- However, there is concern whether power plant can be safely and reliably run until next outage schedule.

Major Overhaul Extension Justification Approach

"To ensure that outstanding risk from major overhaul extension well known & controlled by RAGAGEP (Recognized And Generally Accepted Good Engineering Practices)."

1) PAST PERFORMANCE

2) CURRENT CONDITION REVIEW

3) FUTURE RISK MANAGEMENT

Past Performance Review and Current Condition Assessment

REPCO NEX
INDUSTRIAL SOLUTIONS

- All major troubles occurred in the past were prevented after RCA.
- No sign concerning turbine internal parts observed from the record.
- Machine was found in good condition from history trend.

STEAM TURBINE MAJOR TROUBLE CAUSE

OMAA10CY011: ST SHAFT VIBRATION - X TURBINE FRONT RADIAL BRO

Risk Assessment after Strategy Optimized

Key Concern if Strategy Optimized to Internally Inspect Steam Turbine based on Risk

- Age-Related Degradation
- Non Age-Related Failure Detection Capability
- How to Locate The Failure Detected

The Event of Steam Turbine Tripped by Axial Displacement Suddenly Increased

Age-Related Failure Concern Solved by Life prediction model showing ST life longer than next outage schedule

- Key machine condition data, such as vibration and bearing temperature, were analyzed by life prediction model.
- No sign of degradation from all parameters, but axial bearing temp prediction show potential risk.
- So it was decided to maintain that bearing inspection task in every 3 years with no major impact on plant outage duration.

Non Age-Related Failure Concern Solved by Anomaly Detection Model Capable of Early Detection 2 Months in Advance

Early Detect and Locate Sign of Mech Failure by Turbomachinery Diagnosis

INSPECTION TASK

PLOT	DETAILS
1. Overall trend	- Overall machine condition
2. Spectrum	- Failure mode identified from frequency component in spectrum
3. Phase	- Unbalance phase conditions of rotor indicating rotor mass conditions
4. Shaft centerline	- Average shaft movement in bearing clearance by reference with bottom of bearing
5. Orbit plot	- Dynamic shaft movement in bearing clearance related with rotor dynamic behavior

G = good	
M = Moderate	
F = Fair	

	INSPECTION TASK										
	VIBRATION ANALYSIS					BEARING TEMP.		LUBE OIL ANALYSIS			
SYMPTOMS	Trend Analysis	Spectrum Analysis	Phase Analysis	Shaft Centerline Analysis	Orbit Analysis	Axial Position Monitoring	Journal Bearing Temperature	Thrust Bearing Temperature	Oil Properties	Wear Analysis	Contamination
Rotor unbalance	F	G	G		G						
Rotor bending	F	G	G	М	G		F				
Coupling unbalance	F	G	G	М	G						
Rotating part damage	М	G	G		F	М	F	F			
Rotor crack*	F	М	М								
Rubbing	F	М	М	G	G	М	F	F			
Misalignment	F	М	М	G	G		F				
Resonance	F	G	G								
Journal bearing defect	F	F		М			М	М	F	F	F
Rotating stall	F	М				М	F				
Surging	F	М				М	F				
Oil whip/ Oil whirl	F	G		М	G						
Lude oil degradation							F	F	G	G	G

Optimized Strategy is Justified

- Justification is made from;
 - Steam turbine past performance review
 OK
 - Current steam turbine condition assessment
 > OK
 - Future Risk Assessment
 - => Risk mitigated by;
 - Improve condition monitoring program
 - Monitoring by Predictive Analytics
 - Turbomachinery Diagnosis
 - Keeping necessary spare parts
- Decision on opening turbine casing for internal part inspection/recondition can be made by condition based instead of time based fixed every 6 years.

During Predictive Analytics Model Implementation

REPCO NEX
Lesson Learnt and Solved by ONE Team ONE Goal

INDUSTRIAL SOLUTIONS

Unforeseen Issues

Lack of Knowledge for Design Model

Data Historian
Capability Limitation

Hardware Limitation

Limited Data Export from OEM HMI

Everyone Achieves

Vore

ogether

Data Quality

TEAN

GOAL

Standardized Data Export Practice

Offline Monitor Manual
Intil OEM Real-Time Data
Completely Available

Upgraded Data Historian

Upgraded Hardware Spec

opgraded bala Histori

AVEVA Expert Support

Highlight Catch and Finding After Model Go Live

Plant : Co-Gen Thermal Plant 130MW

Machine: GT12

Model: Mechanical

Event: Lube oil supply temperature was

detected abnormally high than predicted value on 28 April 2022.

Action : Although the temperature was still

lower than interlock setpoint

recommended by OEM, running the

machine at too high lube oil

temperature could shorten bearing

lifetime. Then O&M investigated related

equipment condition and found that

cooling water flow had been improperly

adjusted. After cooling flow valve

position was well set, lube oil

temperature returned to normal value as

predicted by the model.

Saving: This lube oil is supplied to 9 sets of

bearings at gas turbine, gearbox and

generator. Timely correction on

abnormally high lube oil temperature

has saved unnecessary bearing

replacement at cost approx. 0.2MUSD.

Knowledge & Skill Transfer Under Long Term Partnership Program

Pilot Phase

Scale-Up Phase

REPCO NEX: BGP

REPCO NEX: BGP

80:20

20:80

BGP : Built Up

Capability & Capacity

REPCO NEX: Subscription

Operating Model with OJT for BGP

REPCO NEX: Based line technical local support with robust back-up by global AVEVA team

Role in Pilot Phase	REPCO NEX	BGP
RMC (Remote Monitoring Center) Analysts	X	
SME (Subjected Matter Experts)	X (Rotating issue)	X (Other)
Site (relates O&M persons)		X

Check False	Clear False Alarm		
N Duration alarn			
Consult with Damain and Discuss with customer			
OPE, MNT, INC Potential Process Issue	Y	Update Model with lew operating mode	
Potential Y (a)	N N reade Case		
Sensor Issue	[Sensor] Abnormal	Solved Problem	
Potential Machine Issue	Normal Normal	Needed N Model Update	
И		Model Update	
		Update Model by Sensor/Eg Change	
	6	Value Validation	
0	Change Case to Model		
	Open Case [Madel]	Case Closed	
		End	
REPCO NEX INDUSTRIAL SOLUTIONS		and a	
Jp Phase	REPCO NEX	BGP	
toring Center) ts		X	
	X	X	
er Experts)	(Rotating issue) (Other)		

Role in Scale-Up Phase	REPCO NEX	BGP
RMC (Remote Monitoring Center) Analysts		Х
SME (Subjected Matter Experts)	X (Rotating issue)	X (Other)
Site (relates O&M persons)		Х

POWER | THAILAND

B.Grimm Power's Maintenance Strategy Optimization by Data-Driven Approach

Challenge

- Shorten plant outage duration by optimizing maintenance strategy without jeopardizing its reliability and performance
- Asset condition monitoring capability in-place insufficient
- O&M staffs inexperienced in big data analytics

Solution

 Deploy AVEVA[™] Predictive Analytics[™] to detect early sign of failures and conduct turbomachinery diagnosis to locate the defect under long term partnership program

Results

- Shorten outage duration 50% and reduced maintenance cost gaining >1MUSD
- Lower risk of failures induced by unnecessary action and more reliable operations until next outage schedule
- Enable O&M staffs maximize value from their own data and sustain the new digital tool

Questions?

Please wait for the microphone.

State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

Thank you!

© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.

