OCTOBER 26, 2023

Deployment of AVEVA™ Predictive Analytics in energy from waste

David Boyd-Smith - Technical Manager, SUEZ UK

Summary

1. Introduction

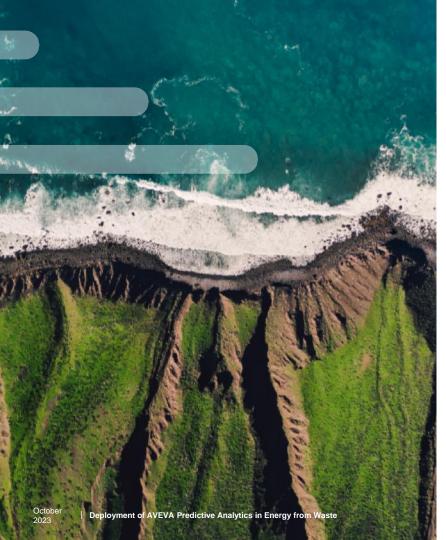
SUEZ recycling and recovery UK

2. The Process

How energy recovery works

3. Challenges

- What are the challenges?
- What are the consequences when we get it wrong?


4. Predictive Monitoring

- Why AVEVA Predictive Analytics?
- Predictive Analytics Trial
- Next Steps

1 Introduction

SUEZ recycling and recovery UK

ABOUT US

- ⇒ Part of the **SUEZ GROUP**
- **⇒ +5,000** employees
- ⇒ Since 1988
- ⇒ Manage WASTE and WATER
- ⇒ Generate HEAT and POWER
- ⇒ Manufacture ALTERNATIVE Fuels
- **⇒ Process RECLAIMED WOOD**
- ⇒ **RECYCLE** a wide range of materials
- ⇒ Our VISION: To live in a world where there is NO MORE WASTE

SUEZ recycling and recovery UK

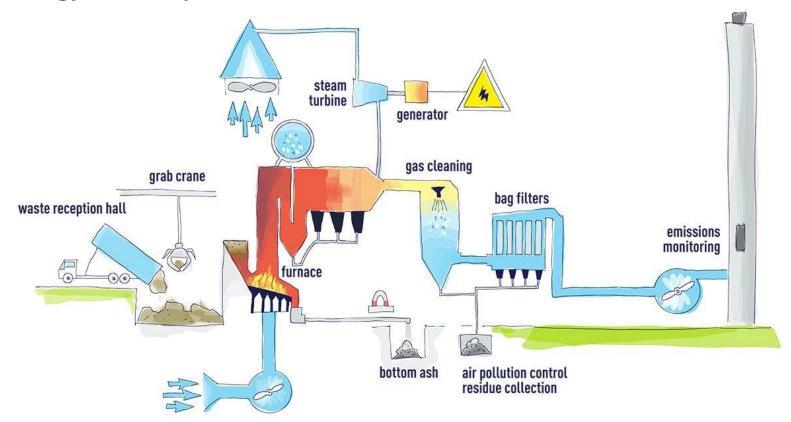
ENERGY FROM WASTE

- ⇒ 11 UK Energy from Waste Plants
- ⇒ Turn WASTE into local source of RENEWABLE ENERGY
- ⇒ Plant waste processing capabilities range from 55kT to 500kT per annum
- ⇒ SUEZ **TOTAL** EfW generating capacity is **233 MW**
- ⇒ Circa 2.5MT of household & commercial waste processed per annum
- ⇒ >1.4 MILLION MWh electricity generated every year

SUEZ recycling and recovery UK

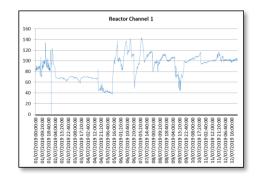
ENERGY FROM WASTE

- ⇒ We are a **WASTE MANAGEMENT COMPANY** not a Power Generation Company!
- ⇒ Electrical generation capability ranging from 4MW to 50MW
- ⇒ An average EfW site is similar in size to a traditional power station
- **⇒ OPERATE & MAINTAIN**


Suffolk Energy from Waste Plant

2 The Process

How energy recovery works


3 Challenges

Challenges

Asset Performance

Process Deviations

Planned Maintenance

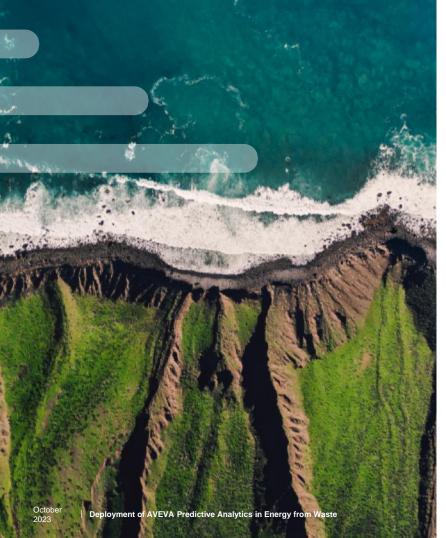
Challenges

Environmental impacts

Financial impact of no (or reduced) power generation

What happens when we get it wrong?

Increased chances of boiler tube leaks

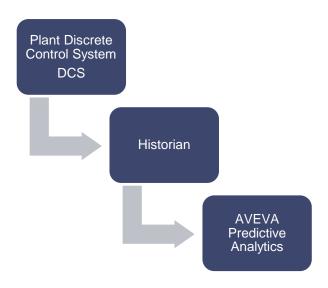

Financial impact of redirecting waste

Offline for >5 days

4
Predictive Monitoring

Predictive Monitoring

WHY AVEVA PREDICTIVE ANALYTICS?


- ⇒ A **SINGLE** Technical Plant Engineer per plant
- ⇒ Difficulty assessing plant performance
- ⇒ **ONE** planned maintenance period per year

- ⇒ We wanted a platform that would:
 - Allow performance of processes and assets to be assessed in VARIABLE CONDITIONS.
 - EARLY IDENTIFICATION of issues

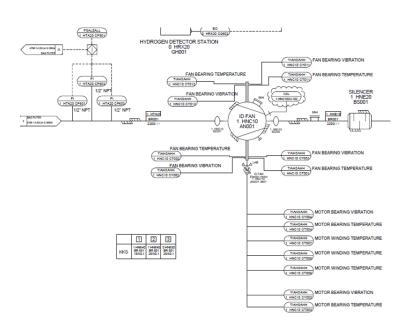
Predictive Analytics Trial

- AVEVA software installed within the SUEZ Data Centre
- The software receives all plant data from historian.

⇒ TRIAL

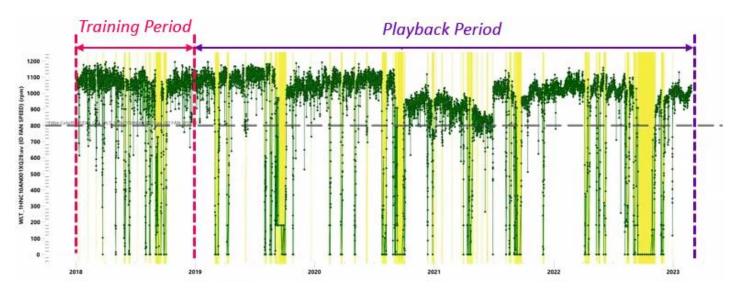
- Software trialled over 5 months at Wilton EfW Plant
- Trial included:
 - Creation of 17 models, covering 7 assets
 - Co-monitoring of models
 - 3 day onsite training course
- Challenges
 - 'Digital models can only be as good as the instrumentation fitted on plant. Insufficient measurements can lead to poor (or a lack of) models.
- Benefits
 - Models were relatively quick to build, circa 40 minutes.
 - Models detected multiple instrumentation issues.
 - Successful detection of a combustion air fan bearing failure

Typical Induced Draft Air Fan



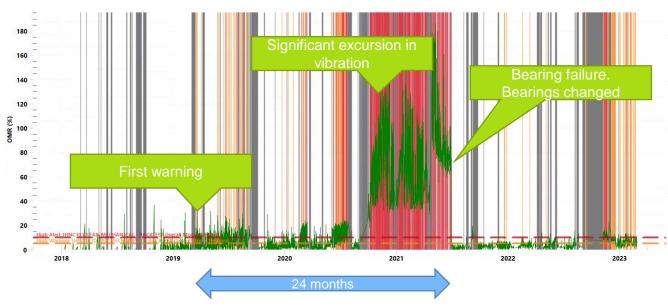
Failed Bearing

TAG MAPPING



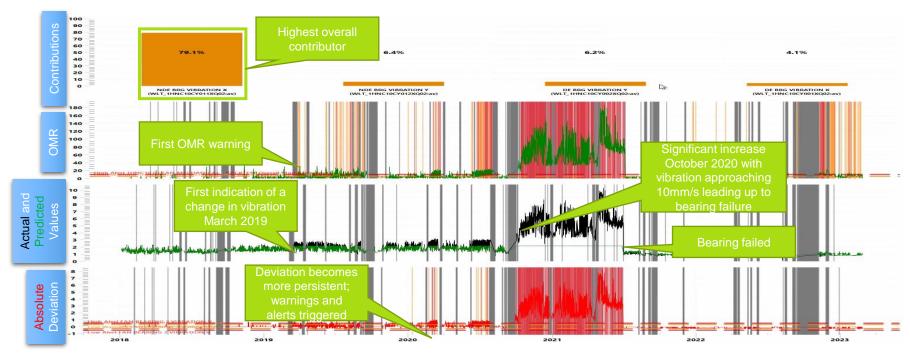
Metric	Line 1	Line 2	Model Group
MOTOR SPEED	WLT_1HNC10AN001XQ28:av	WLT_2HNC10AN001XQ28:av	Multiple
MOTOR CURRENT	WLT_1HNC10AN001XQ15:av	WLT_2HNC10AN001XQ15:av	Multiple
MOTOR ACTIVE POWER	WLT_1HNC10AN001XQ21:av	WLT_2HNC10AN001XQ21:av	Multiple
MOTOR TORQUE	WLT_1HNC10AN001XQ30:av	WLT_2HNC10AN001XQ30:av	Multiple
FAN SPEED SETPOINT PV	WLT_1HNC10AN001YQ01:me	WLT_2HNC10AN001YQ01:me	Multiple
FAN SPEED SETPOINT SP	WLT_1HNC10AN001YQ01:spa	WLT_2HNC10AN001YQ01:spa	Multiple
DE BRG TEMPERATURE 1	WLT_1HNC10CT001XQ02:av	WLT_2HNC10CT001XQ02:av	Fan Mechanical
DE BRG TEMPERATURE 2	WLT_1HNC10CT002XQ02:av	WLT_2HNC10CT002XQ02:av	Fan Mechanical
DE BRG VI BRATION X	WLT_1HNC10CY001XQ02:av	WLT_2HNC10CY001XQ02:av	Fan Mechanical
DE BRG VI BRATION Y	WLT_1HNC10CY002XQ02:av	WLT_2HNC10CY002XQ02:av	Fan Mechanical
NDE BRG TEMPERATURE 1	WLT_1HNC10CT011XQ02:av	WLT_2HNC10CT011XQ02:av	Fan Mechanical
NDE BRG TEMPERATURE 2	WLT_1HNC10CT012XQ02:av	WLT_2HNC10CT012XQ02:av	Fan Mechanical
NDE BRG VIBRATION X	WLT_1HNC10CY011XQ02:av	WLT_2HNC10CY011XQ02:av	Fan Mechanical
NDE BRG VIBRATION Y	WLT_1HNC10CY012XQ02:av	WLT_2HNC10CY012XQ02:av	Fan Mechanical
MOTOR BRG TEMP 1 NDE	WLT_1HNC10CT004XQ02:av	WLT_2HNC10CT004XQ02:av	Motor Mechanical
MOTOR BRG TEMP 1 DE	WLT_1HNC10CT003XQ02:av	WLT_2HNC10CT003XQ02:av	Motor Mechanical
MOTOR BRG VIB X NDE	WLT_1HNC10CY004XQ02:av	WLT_2HNC10CY004XQ02:av	Motor Mechanical
MOTOR BRG VIB X DE	WLT_1HNC10CY003XQ02:av	WLT_2HNC10CY003XQ02:av	Motor Mechanical
MOTOR WINIDNG TEMP U	WLT_1HNC10CT005XQ02:av	WLT_2HNC10CT005XQ02:av	Motor Thermal
MOTOR WINIDNG TEMP V	WLT_1HNC10CT006XQ02:av	WLT_2HNC10CT006XQ02:av	Motor Thermal
MOTOR WINIDNG TEMP W	WLT_1HNC10CT007XQ02:av	WLT_2HNC10CT007XQ02:av	Motor Thermal
FAN FLOW	WLT_1HNE40CF001XQ01:av	WLT_2HNE40CF001XQ01:av	Fan Process
FAN SUCTION TEMP	WLT_1HTA20CT001XQ02:av	WLT_2HTA20CT001XQ02:av	Fan Process
FAN DISCHARGE TEMP	WLT_1HNE40CT001XQ01:av	WLT_2HNE40CT001XQ01:av	Fan Process
FAN DISCHARGE PRESS	WLT_1HNE40CP001XQ01:av	WLT_2HNE40CP001XQ01:av	Fan Process
FAN SUCTION PRESSURE	WLT_1HTA20CP901XQ99:av	WLT 2HTA20CP901XQ99:av	Fain Process

- The tags are mapped in four groups to AVEVA's standard model templates:
 - Motor Mechanical
 - · Motor Thermal
 - · Fan Mechanical
 - Fan Process



MODEL TRAINING DATA

- Data extracted from plant historian system back to 2018
- A years worth of data selected as baseline training data
- A filter (yellow shaded data left) is used to deactivate the models when the motor speed is less than 800 RPM
- Data is cleaned before it is used for training to remove any outliers.


LINE 1 FAN MECHANICAL MODEL

WILTON LINE 1 INDUCED DRAUGHT FAN FAILURE

- In Dec 2020, high vibration was detected
- Failure occurred two weeks before the planned outage.
- The model was able detect the first instances of bearing deterioration in May 2019.
- Earlier detection would have prevented 5 days unplanned downtime.

LINE 1 FAN ANALYSIS

Predictive Monitoring – AVEVA

⇒ CURRENT SITUATION

- Models have been created & deployed on Wilton EfW
- A team of engineers have completed a 3 day training course covering model building and monitoring

Models created for:

- Boiler flue gas path
- Boiler tube leaks
- Steam turbine mechanical & efficiency
- Generator mechanical, thermal & electrical
- Air cooled condenser efficiency
- Water tube condenser efficiency
- Combustion air fans mechanical, process & thermal

⇒ NEXT STEPS

- AVEVA to create 400 models for 10 EfW plants in 6 months
- All Site Technical Plant Engineers to be trained in building and monitoring models.
- AVEVA monitoring to be used as a basis for weekly plant performance meetings, and quarterly performance review analysis.

THANK YOU

Questions?

Please wait for the microphone. State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.

in linkedin.com/company/aveva

@avevagroup

ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world's most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com

