Taking the Next Step in your Digital Journey

Michael T. Reed – Sr. Manager, AI Center of Excellence - AVEVA
• “Quo Vadis?”
• Predictive + Prescriptive Maintenance
• Integration with AVEVA™ PI System™
• Next Steps in your Digital Journey – AI at AVEVA

“AI & ML-based analytics using AVEVA PI System”
“Quo Vadis?”

“OK, I have a great PI implementation, where do I go now?”
Optimize your asset reliability, maintenance and performance

A journey in operational reliability with AVEVA PI System and AVEVA Predictive Analytics

Failure patterns

- Age-related failure
- Random failure

82% Predictive technology For early warnings

18% Reactive and Preventive programs

It’s a journey

- Reactive Maintenance
- Preventive Maintenance
- Condition-Based Maintenance
- Predictive + Prescriptive Maintenance
- Risk-Based Maintenance
- AVEVA Asset Strategy Optimization
- AVEVA Predictive Analytics
- AVEVA PI System
- EAM/CMMS
- Run to failure

ARC studies show only 18% of asset failure is age-related. Based on these data, preventive maintenance provides a benefit for just 18 percent of assets, and monitoring for predictive maintenance is a recommended option for the rest.

© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.
Predictive + Prescriptive Maintenance

Avoiding downtime and optimizing operating costs
Real AI, real results

Predictive failure detection for business-critical equipment

• No code AI and machine learning
• Advanced alert and case management for knowledge capture and reporting
• Data playback capability for testing models
• Templates accelerate configuration, deployment and scale-up

It’s the way you operationalize and scale AI for industrial operations
Monitoring without predictive analytics
Monitoring approach

Traditional Monitoring

- Constant alert/alarm limits are typical
- Damage accumulates prior to reaching limit

Predictive Asset Monitoring

- Actual minus estimated (residual) signal detects anomaly as-soon-as-possible
Theory underlying predictive analytics

Foundation for AVEVA solutions

- Uses historical data to describe how a piece of equipment normally operates and build a model (*patented AI algorithm for optimized results*)
- Continuously monitors behavior in real-time
- Alerts when the operation differs from the historical norm
- Early warning detection of equipment problems
- Advanced analysis capabilities including problem identification and root cause analysis
Deep and clear predictive analysis

An anomaly was detected. What are the next steps?

- Overall anomaly score trending
- Individual sensor deviations trending
- Sensor contribution score to anomaly
- Diagnostics on sensor deviation signature
- Ranking of potential faults
- Fault match trending
- Prescriptive guidance for remediation
- Forecasting for time until failure
- Case tracking from alert inception until remediation
Best in class fault diagnostics

- Vizualisation and representation of fault diagnostics including fault trees for deeper insights
- Probability on failure modes
- Remediating actions with prescriptive analytics
Fault tree visualization

- Vizualisation and representation of fault diagnostics including fault trees for deeper insights
- Probability on failure modes
- Remediating actions with prescriptive analytics
Time to failure forecast

Data driven decisions

• Determine the risk level of an operating asset and urgency for actioning the predictive alerts

• Estimate time to repair or replacement under current operating conditions
Comprehensive case management

Knowledge management for continuous improvement

• See predictive trends to cases
• Make better and faster decisions with increased access to information
• Highlight relevant cases when investigating fault diagnostics
• Integrate the learnings of past anomalies with user activities
• Visualize trends
• Capture knowledge and best practices
• Track actions (who, what, when)
Bring your own algorithm

Add value to current investments

Data scientists can create and deploy customized predictive algorithms to add value to the pre-built features of AVEVA Predictive Analytics.

• Pre-built model templates
• Automated model building
• Model back testing and validation
• Alert workflow
• Fault diagnostics
• Prescriptive actions
• Case management
• Time to failure forecasting
Operational scale matters

Predictive monitoring at scale

AI/Machine learning is the easy part

Operationalizing at scale is the difference between success or failure
Automated model building

Deployment at scale for fast time to value

- Minimize manual work
- Model templating
- Automatic cleansing of the training data
- Automatically include filters, alert thresholds, and fault diagnostics
- Integration to PI Asset Framework or existing historian

- Minimize errors
- Ensure consistency
- Increase labor productivity
Integration with AVEVA™ PI System™
Deep integration with AVEVA™ PI System™

- Visibility to more people, integration of content to AVEVA PI Vision
- Predictive Analytics results integrated into AVEVA PI System for contextualized insights
- Integration with PI Server’s asset framework enables more efficient model building
Effective enterprise data modelling

Predictive Analytics is integrated with Asset Framework

Weather Conditions
Relative Humidity: 34%
Current Temp: 85 F
High: 92
Low: 57 F
Wind: 8 mph/N

DAILY PRODUCTION
Planned – 112.8 kbbl
Forecast – 119 kbbl

Crude Furnace
Draft Pressure: -0.5 WC
Stack Temp: 316 F
Oxygen: 2.5%
Outlet Temp: 840 F
Cold Oil Velocity: 6 ft/sec

Alert!
Pump needs servicing in next 72 hours
AVEVA™ PI System™ + AVEVA™ Predictive Analytics

Air Liquide
- Air Liquide uses AVEVA for 50% Predict digital transformation program
- Artificial intelligence based predictive analytics for early warning, notification and diagnosis of equipment and process problems

Total
- Total uses AVEVA for centralized predictive asset health and performance monitoring of assets
- Artificial intelligence based predictive analytics for early warning notification and diagnosis of equipment and process problems

BASF
- BASF uses AVEVA for digital transformation initiative
- Artificial intelligence based predictive analytics for early warning notification and diagnosis of equipment and process problems and augmented reality

International Paper
- The Mill of the Future
- Putting data governance to work
- Streamline and improve performance, and accelerate sound and real-time decision making

Duke Energy
- Duke Energy uses AVEVA for predictive fleet asset health and performance monitoring
- Enabling $100M millions saving
- Early warning identification and diagnosis of equipment problems – improved reliability and performance

Rio Tinto
- Provide advanced early warning notification and diagnosis of equipment problems and failures
- Savings of $40M in motor failure cost avoidance $12M (USD)
- $2M in maintenance cost avoidance $234K (USD) in 72 hours of downtime
- Rail mill maintenance cost avoidance $14M (USD)

© 2023 AVEVA Group plc and its subsidiaries. All rights reserved.
Next Steps in your Digital Journey – AI at AVEVA
Artificial intelligence across AVEVA’s portfolio

Predictive Performance
Prescriptive Prognostic Perceptive

17 commercially released AI products

- Automated Analytics
- Guided Analytics
- Predictive Analytics/Maintenance
- Asset Prescriptive Analytics
- Process Optimization
- Predictive Quality/Throughput (batch)
- Remaining Useful Life Estimation (RULE)
- Predictive Asset Optimization (PAO)
- Schedule AI Assistant
- Realtime Crude
- AI-infused Process Simulation
- AI-infused Dynamic Simulation
- E3D Whitespace Optimizer
- E3D Suggestive Design Framework
- Point Cloud Manager
- Advanced Process Control (APC)
- InSight OMI App (native integration with System Platform SCADA)
- AI inferencing
- Vision AI Assistant
- Knowledge Linking
Michael T. Reed
Sr. Manager, AI Center of Excellence

• AVEVA
• michael.reed@aveva.com
Questions?
Please wait for the microphone.
State your name and company.

Please remember to...
Navigate to this session in the mobile app to complete the survey.

Thank you!
This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.
ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world’s most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com