

Prediktivní analytika s Pl Systemem

Vít Gruner Tadeáš Marciniak

Problem Statement: Refinery Stabilization Column

Problem Statement: Refinery Stabilization Column

- The product has to be stabilized by controlling its Reid Vapor Pressure (RVP)
- The stabilizer columns does not have on-line RVP analyzer
 - manual samples (taken twice a day) are analyzed by the laboratory
- More than 12 on-line measurements are collected each 6 minutes

The goal: 59.972

 Use the process data collected in the PI System along with the laboratory measurements to generate a model predicting the RVP

The PI System Infrastructure

PI Integrators

Refinery Stabilization Column – PI Architecture

Machine Learning Model = Multivariate Function

Shaping and exporting the data

Microsoft®

Generating a model – Data Preparation

Generating a Linear Regression Model

Model Training

from sklearn.linear_model import LinearRegression
linReg = LinearRegression()
linReg.fit(X_train, y_train)

	LinReg
const	21.643687
BottomFlow	-0.040710
BottomLevel	-0.032544
BottomPressure	0.030519
BottomTemperature	-0.018783
FeedTemperature	0.014180
HeadTemperature	0.004406
OffgasFlow	0.019082
RefluxFlow	-0.000348
Tray25Temperature	-0.048495
	_

LinReg Model:

Generating a Support Vector Regression Model

Support Vector Regression

Image Source

· Minimize:

$$\frac{1}{2}\left\|\boldsymbol{w}\right\|^2 + C\sum_{i=1}^N \left(\boldsymbol{\xi}_i + \boldsymbol{\xi}_i^*\right)$$

· Constraints:

$$y_i - wx_i - b \le \varepsilon + \xi_i$$

$$wx_i + b - y_i \le \varepsilon + \xi_i^*$$

$$\xi_i, \xi_i^* \ge 0$$

....

Fit as many instances as possible on the street (wx+t

Modeling

```
from sklearn.svm import SVR
svrModel = SVR(kernel='rbf')
svrModel.fit(X train, y train)
```

SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',
 kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

Model Verification

Create a Streaming View

```
Streaming
from requests.packages import urllib3
urllib3.disable warnings()
import requests
from requests kerberos import HTTPKerberosAuth, OPTIONAL
import base64
def writeValuesToPI(time, linReg_prediction, svr_prediction):
     timeISO8601 = time[:19] + 'Z'
     elementPath = 'PISRV01\Stabilizer\Houston\Stabilizer'
     linPredPath = 'PISRV01\Stabilizer\Houston\Stabilizer LinReg RVP'
     svrPredPath = 'PISRV01\Stabilizer\Houston\Stabilizer SVR RVP'
    elementWebId = 'P1Em' + base64.b64encode(elementPath.encode()).decode('ascii')
svrPredWebId = 'P1AbE' + base64.b64encode(svrPredPath.encode()).decode('ascii')
inPredWebId = 'P1AbE' + base64.b64encode(linPredPath.encode()).decode('ascii')
     url = f'https://pisrv01/piwebapi/streamsets/{elementWebId}/value?webIDType=PathOnly'
     body = [
          "WebId": svrPredWebId,
          "Value": {
             "Timestamp": timeISO8601,
             "Value": svr prediction
          "WebId": linPredWebId.
          "Value":
            "Timestamp": timeISO8601,
"Value": linReg_prediction
     r = requests.post(
          urľ.
          str(body),
          auth=HTTPKerberosAuth(mutual authentication=OPTIONAL),
          verify=False
     print(f'PI Web API Response Status: {r.status_code}')
```


Predictive ML Models

ML Models in PI System Infrastructure

Examples

Deschutes Brewery - Brewing Beer the Smart Way (https://www.osisoft.com/Presentations/Brewing-Beer-the-Smart-Way/)

Boehringer Ingelheim - A Case Study in Biopharmaceutical Data Analytics

(https://www.osisoft.com/Presentations/A-Case-Study-in-Biopharmaceutical-Data-Analytics--Using-Asset-Framework-and-Event-Frames-for-MVDA/)

Vitens N.V. - Data Science with R and the PI System

(https://www.osisoft.com/Presentations/Data-Science-with-R-and-the-PI-System/)

Using MATLAB with PI System for Analysis and Process Monitoring

(https://www.mathworks.com/videos/using-matlab-with-pi-system-for-analysis-and-process-monitoring-81859.html)

Challenges

- Pharma, food & beverage prediction of fermentation performance
- Chemistry prediction of reaction outcomes
- Metallurgy liquid metal composition
- All industries condition based maintenance (degradation curve prediction)

• ...

Thank You

